
The 8-Point Algorithm as an Inductive Bias for Relative Pose Prediction by ViTs

Chris Rockwell, Justin Johnson, David F. Fouhey
University of Michigan

Abstract

We present a simple baseline for directly estimating the
relative pose (rotation and translation, including scale) be-
tween two images. Deep methods have recently shown
strong progress but often require complex or multi-stage ar-
chitectures. We show that a handful of modifications can be
applied to a Vision Transformer (ViT) to bring its compu-
tations close to the Eight-Point Algorithm. This inductive
bias enables a simple method to be competitive in multiple
settings, often substantially improving over the state of the
art with strong performance gains in limited data regimes.

1. Introduction

Estimating the relative pose between two images is a
fundamental vision problem [17], with applications in-
cluding 3D understanding [22, 34, 57] and extended real-
ity [30, 35, 38, 73]. Early work focused on robust [14] fit-
ting of models [17, 19, 31, 42] on detected correspondences
[2, 32, 54] between the images. This strategy can fail catas-
trophically with poor correspondence, which is especially
frequent in the wide baseline setting, when the images have
a substantial pose difference. Moreover, even when it is suc-
cessful, it cannot recover the scale of the translation [17].
The situation is often improved in practice by obtaining
more images (e.g., SfM [57] and SLAM [41]), or sensors
like IMUs [15, 16, 26] and RGBD [11, 70]. Nonetheless,
people routinely infer relative pose from two ordinary im-
ages with a wide baseline, and whole industries like real es-
tate depend on this ability. Rather then use extra sensors or
images, humans integrate cues like correspondence, famil-
iar object size, and priors on scenes. This paper investigates
such an ability, to estimate relative pose, including rotation
and translation with scale, from two ordinary images.

Based on these observations, there has been much work
applying learning to the problem. One line of attack [8,
10, 55, 60, 63] has been to follow the classic pipeline
and replace classic correspondence methods [2, 32, 54]
with learned ones. This approach is appealing since the
learning method finds correspondence, an especially thorny
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Figure 1. We propose three small modifications to a ViT via the
Essential Matrix Module, enabling computations similar to the
Eight-Point algorithm. The resulting mix of visual and positional
features is a good inductive bias for pose estimation.

challenge in the wide-baseline setting, and the conversion
of correspondences to pose is done by a provably correct
method [31, 42]. However, it comes at a cost of inherit-
ing the Essential Matrix’s intrinsic scale ambiguity, lead-
ing to translation-up-to-scale. Thus, another line of work
treats relative camera pose estimation as a learning prob-
lem [5, 12, 22, 48]. These approaches have shown promise
in the wide-baseline setting, but often involve multiple
stages [7, 22], are not as performant as correspondence-
based techniques in the settings we try [12, 48], or do not re-
cover a translation scale [5, 7]. Moreover, since these meth-
ods learn an end-to-end mapping from images to camera
pose with few inductive biases, they are often data hungry.

We propose a Vision Transformer (ViT) [9, 64] approach
that estimates rotation and translation with scale in one for-
ward pass by integrating the problem’s structure implic-
itly as an inductive bias. We reconcile the Eight-Point
Algorithm [19, 31] with ViTs by showing that a ViT for-
ward pass can be made close to [19, 31] by three minor
modifications: (1) bilinear attention [24] instead of atten-
tion [64]; (2) quadratic position encodings; and (3) dual-
softmax [53, 60, 63] instead of softmax. These modifica-
tions are put in one module, the Essential Matrix Module
(EMM), that we place atop an otherwise ordinary ViT, as
shown in Fig. 1. The EMM gives an inductive bias by
providing positional features that approximate a key step
of [31], visual features, and features that mix the two.

We attach the Essential Matrix Module to the end of an
ordinary ViT [9] described in §3. We train and evaluate this
ViT on multiple relative camera pose estimation tasks and
datasets as described in §4 and compare with the state of the
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art for each on challenging datasets like Matterport3D [6],
InteriorNet [29], and StreetLearn [39]. Our experiments on
rotation+translation (§4.2) and rotation (§4.3) demonstrate:
(1) that our simple approach outperforms (or occasionally
matches) multiple alternate networks including concatena-
tion [12, 48] and correlation volume methods [5, 22], tech-
niques based on feature correspondence [8, 32], and tech-
niques trained to optimize a full 3D reconstruction [22];
(2) that each component of the modification is important,
as shown by extensive ablations; and (3) that the EMM
improves data efficiency by substantially boosting perfor-
mance in moderate data regimes (§4.4), suggesting that
epipolar geometry is a good inductive bias.

2. Related Work

Our work introduces a learning-based approach to rel-
ative pose estimation by modifying vision transformers to
perform computations similar to the Eight Point Algorithm.

Classic Work. Relative pose estimation from an image pair
is a sufficiently broad problem to preclude a full account.
We refer readers to [17], and focus on the closest works,
which all follow a strategy of solving for pose given cor-
respondences from local descriptors [2, 32, 54]. We revisit
the 8-point algorithm [19, 31] that maps correspondences
to an Essential Matrix, which was invented by Longuet-
Higgins and extended to Fundamental Matrices by [13, 18].
While it often replaced by other approaches that use fewer
correspondences (e.g., [27, 42]), much of the 8-point algo-
rithm’s structure are calculations that we show can be done
by Transformers. In our wide baseline setting (i.e., large
pose difference), historically there are alternate descriptors
and specialized techniques [36, 40, 46].

Learned Pose Estimation. Given the difficulties associ-
ated with optimization on correspondence, multiple lines
of work aim to improve the pipeline with learning. For
instance, many methods improve detectors and descrip-
tors [8, 10, 63] or correspondence estimation [3, 47, 50,
55, 60, 72]. These works typically turn correspondences
to pose with the Essential Matrix [31, 42], which makes it
impossible to recover translation scale without additional
signals [17]. In contrast, our proposed work learns a direct
mapping without explicitly constructing an Essential Ma-
trix, and therefore recovers scale using image-based cues.
We note that our components are also often used in corre-
spondence work [60, 63]; here, we use them directly for
pose and show a close relationship between ViTs and [31].

Our method is closer to work that learns a mapping from
images to pose. This area of research is relatively newer,
and has become more complex over time (e.g., early net-
works concatenated data from two images [12, 28, 37],
which has been supplanted by correlation volumes [5, 22]).
These approaches are often data and compute hungry [7],

use multiple stages (e.g., discrete/continuous optimization
in [22], two-stage networks in [7, 65]), and use little of
the structure of pose estimation. In contrast, our approach
brings ViT computations close to this structure, which we
hypothesize helps use the data more effectively.

SLAM, SfM, and RGBD. Given the difficulties of pose
estimation from two images, a wealth of other approaches
have been tried that modify the problem. The most common
solution is to use more images with typically high overlap,
e.g. via Structure-from-Motion [57], SLAM [41, 61, 66] or
localization [4, 49, 68]. In contrast, we aim to solve the two-
view, wider-baseline case. Other solutions include adding
sensors like an IMU [15, 16, 26] or depth data [11, 69, 70];
our approach relies only on RGB data.

Vision Transformers and Inductive Biases. Large parts
of our proposed approach follow a basic recipe for Vision
Transformers [9, 64]. These have emerged as a competitor
to convolutional neural networks in the past few years, and
we refer interested readers to [23, 43] for a more thorough
summary. Our work shows that small modifications of the
pipeline brings the computations close those of [31]. This
is part of a broader trend of injecting geometric inductive
biases to networks via layers [45] or token engineering [71].

3. Approach
Our goal is to map two overlapping images to a rela-

tive camera pose including translation scale, or a rotation
R ∈ SO(3) and translation t ∈ R3. This task requires both
robustness to large view changes with limited correspon-
dence, and handling scale ambiguity. We propose a simple
approach that fuses ideas from classical multi-view geome-
try with large-scale learning.

At the heart of our approach is a transformer with small
critical changes that mimic a computation used in the Eight
Point Algorithm [19, 31]. These changes include bilin-
ear attention [24], dual-softmaxes [53, 60, 63], and an ex-
plicit positional encoding. We first analyze the relation-
ship between the Eight Point Algorithm and and an alter-
nate setup that is more amenable to computation by a trans-
former (§3.1). We then describe how we operationalize this
by introducing our base transformer and our Essential Ma-
trix Module (§3.2). We conclude by analyzing the learn-
ability of this function with synthetic experiments (§3.3).

3.1. Transformers and the Eight Point Algorithm

The Fundamental and Essential matrices can be obtained
from correspondences via the Eight-point algorithm [19,
31, 18, 13]. As input, one assumes N correspondences
[ui, vi] ↔ [u′i, v

′
i]. With known intrinsics K, one repre-

sents the locations of the correspondences with normalized
points xi ≡ K−1[ui, vi, 1]

> and x′i ≡ K−1[u′i, v
′
i, 1]
> and

recovers an Essential matrix (E); if K is unknown, one uses



standard homogeneous coordinates (i.e., xi = [ui, vi, 1]
>)

and recovers a Fundamental matrix (F). Since we have the
intrinsics, we will refer to the Essential matrix.

The Eight-Point Algorithm constructs a matrix U ∈
RN×9 whose ith row Ui,: is the Kronecker product of the
correspondences, or xi ⊗ x′i. The matrix U>U ∈ R9×9

captures the information needed to estimate the Essential
matrix: one computes the eigenvector corresponding to
the smallest eigenvalue of U>U, reshapes the vector, and
makes the reshaped matrix rank deficient. The resulting ma-
trix E does not uniquely define the relative pose, but rather a
family of solutions comprising two rotations R and R′ and
a translation direction (that can be scaled by any λ 6= 0).

Careful minor modifications of Transformer can enable
the computation of the entries of U>U. We assume the
transformer is given a set of P patches at locations {pj}Pj=1

where every correspondence is at one of the patches. In
addition to using these locations directly, we further define
a 6D basis expansion φ([u, v, 1]) = [1, u, v, uv, u2, v2] that
we apply to each patch to yield a matrix Φ ∈ RP×6 such
that Φj,: = φ(pj). Finally, to represent correspondences
implicitly, we define an indicator matrix A ∈ {0, 1}P×P
such that Aj,k = 1 if and only if points pk and pj are in
correspondence and 0 otherwise.

Our key observation is that each unique entry of U>U ∈
R9×9 is in the matrix Φ>AΦ ∈ R6×6. While this more
compact form is not amenable to eigenvector analysis, it is
all the information needed for a learned estimator. A deriva-
tion appears in the supplement, but the two critical steps
are: first, to decompose the matrix as an explicit sum over
correspondences U>U =

∑N
i=1 U>i,:Ui,: and rewrite it im-

plicitly with A; and second, that the 36 unique entries in
U>i,:Ui,: can be generated from φ(xi)φ(x

′
i)
>.

The remaining step is estimation of R and t from U>U.
MLPs are universal approximators [21], but a number of
things make this easier in practice. First, often one aims to
solve a subset of problems from a distribution, rather than
all instances. Additionally, one is also using a wealth of
alternate image-based cues. In addition to facilitating learn-
ing, the network can use these cues to resolve the ambigu-
ities intrinsic to E: for instance, the scale ambiguity can
be resolved implicitly via recognizing familiar objects. We
explore the learnability of this function in §3.3.

Together, this suggests that transformers estimating R, t
may benefit from a few small modifications. The crux is
that the computation of Φ>AΦ, using quadratic position
encodings per patch in Φ and a correspondence indicator in
A mimics the computation of the entries of U>U. Thus, a
network may benefit from having Φ>AΦ during predic-
tion. Moreover, A also should be able to represent un-
matched correspondences (i.e.,

∑P
k=1 Aj,k≈0). Finally, we

stress that the model should also contain features beyond Φ
to help learning and resolve ambiguities such as scale.

3.2. Putting things In Practice

Our approach consists of two components. The main
component is an Essential Matrix Module, which maps
from P , D-dimensional transformer tokens, one for each
of the P patches in the image, to a feature that is used
to predict R and t. This module is added to a standard
ViT [9] backbone that maps images to a set of tokens. Our
backbone deliberately follows a standard vision transformer
recipe [9, 64]: we see backbone innovations as orthogonal
to innovations in the mapping from tokens to outputs. On
the other hand, our Essential Matrix Module must contain
critical modifications.
Backbone and Setup. Our backbone consists of two main
components that function as a learned mapping from an im-
age to a RP×D matrix of features, one per patch. The first
component is an encoder that uses the first blocks from a
standard ResNet-18 [20], which helps the network extract
good features per-patch. On top of this, we use blocks from
a standard ViT [9] (ViT-Tiny) to map the the patch features
to our final set of P D-dimensional tokens. Since the archi-
tectures have different feature sizes, we bridge them with
a ResNet block that maps the feature dimensions. A full
network description appears in the supplemental.
Standard Transformer Model. The canonical ViT maps
a set of patches from one image to an output embedding
used for classification. Given a patch embedding, this en-
tails computing query, key and value matrices Q,K,V ∈
RP×D followed by softmax(QK>)V. To avoid notational
clutter, we drop the usual [64] scaling factor of 1/

√
D in-

side the softmax here, and in all other softmax references.
For our case of two images, there are two sets of ma-

trices, namely Q1,K1,V1 ∈ RP×D for image 1 and
Q2,K2,V2 ∈ RP×D for image 2. The simplest cross at-
tention is to concatenate cross-attention per-image, or

[softmax(Q1K
>
2 )V2, softmax(Q2K

>
1 )V1]. (1)

This approach produces good results, but a few minor mod-
ifications can substantially improve its performance.
Essential Matrix Module. We propose three changes to
Eqn. 1 that help approximate the entries of U>U. These
are shown in Fig. 2.
Bilinear Attention and Quadratic Position Encodings. We
apply bilinear attention [24] to the values and quadratic po-
sitional encodings, or

[V2,Φ]>norm(Q1K
>
2 )[V2,Φ] ∈ R(D+6)×(D+6) (2)

where Φ ∈ RP×6 contain the positional encodings
[1, u, v, uv, u2, v2] from §3.1 and norm is a normalization
for the raw attention scores. Thus A = norm(Q1K

>
2 ). To

use both images, we also compute Eqn. 2 substituting in
Q2, K1, and V1 and concatenate the results, leading to a
(2D2 + 24D + 72)-dimensional feature per attention head.
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Figure 2. Essential Matrix Module. We make three small changes to standard ViT Cross-Attention: (1) appending positional encodings
to Values, (2) applying a dual softmax on Affinities, and (3) applying bilinear attention.

Rationale. If A = norm(Q1K
>
2 ) correctly indicates cor-

respondence, then this computation makes the bottom-right
6× 6 submatrix of Eqn. 2 contain the entries of U>U. The
top-left D × D submatrix are visual features; the rest mix
position and visual features. These image features are im-
portant for scale estimation, since U>U does not provide
information about scale. They may also implicitly contain
position encodings (e.g., due to convolutions using zero-
padding as a proxy for image location). In practice, U>U
is followed by neural layers and thus does not need to match
true U>U; though in the supplement we find non-zero rank
correlation with ground truth.

Dual-softmax. The above is exact when A is a correspon-
dence indicator matrix. While attention makes this impos-
sible to ensure exactly, we help more closely approximate it
with a dual-softmax [53, 60, 63], or set norm(Q1K

>
2 ) to

softmax(Q1K
>
2 , 1)� softmax(Q1K

>
2 , 2), (3)

where softmax(·, k) applies softmax across the k-th axis.

Rationale. Traditional attention normalizes the ma-
trix product Q1K

>
2 ∈ RP×P by a single softmax,

softmax(Q1K
>
2 , 1), forcing

∑P
k=1 Aj,k = 1. This con-

straint means that A cannot indicate correspondence for
patches without matches where

∑P
k=1 Aj,k = 0. At best,

attention can be a uniform distribution; at worst, attention
can latch onto a random correspondence. In all cases, all
patches contribute equally to the final product in Eqn. 2.
The network can mitigate this by making non-matching at-
tention uniformly distributed and 1

P

∑P
k=1 Vk,: = 0, but

this strategy does not work for parts of Φ, e.g., the u2 term
is non-negative and usually positive.

A dual-softmax suppresses non-matching patches while
not altering bidirectional matches. If the attention to-and-
from patch j is uniformly distributed, then the total atten-
tion

∑P
k=1 Aj,k is 1

P instead of 1 in the normal softmax
case. On the other hand, if patch j and patch k both match
well, then the attention approaches 1. Then, even if all

but one patches have no match, their total contribution is
smaller (P−1

P ) than even a single bidirectionally matching
patch (1). Thus, the varying weighting helps suppress the
contributions of patches without matches. While the form
of A intrinsically makes the computation an approximation,
we stress that the consumer of ΦAΦ> is a learned module
and may be able to learn around approximation errors, es-
pecially with vision features.
Pose Regressor. Given essential matrix encodings, we
regress pose using a 2 hidden layer MLP. We predict trans-
lation in real units, and predict rotation in quaternions, nor-
malizing so scale is one. We train only using a l1 geodesic
loss on pose where the geodesic loss is the magnitude of the
vector between predicted and ground truth pose.

3.3. Synthetic Validation

While our approximation of U>U can be understood an-
alytically, one critical component is the learned mapping
from U>U to R, t that is done by the Pose Regressor. To
better understand the learnability of the function, we show
the method on synthetic examples with the entries of U>U
but no visual features. Our scenes consist of points uni-
formly sampled inside a sphere with center ∼Unif(− 1

2 ,
1
2 )

and radius ∼Unif( 1
2 ,

3
2 ). We sample camera rotations and

translations from distributions that we vary to analyze the
learnability of the problem. For each pair of views with suf-
ficient overlap (100 of 10K sampled 3D points projecting to
the images), we compute U>U, which is used as a feature
for pose estimation by a MLP (details in supplement).

We analyze two tasks. The first is Translation, or esti-
mating the generating t; due to scale-ambiguity, we assume
||t||2 = 1 and tz > 0. We quantify errors by the angle
between the estimated and true translation. The second is
Rotation, or estimating the rotation that generated the data,
which forces the network to resolve the usual rotation am-
biguity of E. We quantify errors by the rotation geodesic.

We try four distributions. In 3D R is sampled via uni-
formly distributed Euler angles, and t ∼ Unif(−1, 1). The



Table 1. Synthetic Validation. We report the median angular er-
ror across two tasks (translation & rotation) and four datasets (in
decreasing difficulty: 3D, 2D Large/Medium/Small (L/M/S).

Translation (◦) Rotation (◦)
3D 2DL 2DM 2DS 3D 2DL 2DM 2DS

MLP 18.4 5.6 3.0 1.8 33.5 3.6 1.8 0.7
Chance 64.0 49.1 47.9 47.9 125.3 22.2 4.8 1.0

next three are 2D Small/Medium/Large, consisting of 2D
motion primarily in the xz plane with varying amounts of
rotation variance: R is sampled from Normally distributed
Euler angles with rotation mainly in y (y ∼ N(0, r))
and x, z ∼ N(0, r

20 )) where r = 1, 5, 25◦ for small,
medium, and large. Translation is mainly in the xz plane
t ∼ N(0, [ 13 ,

1
60 ,

1
3 ]). To avoid epipolar degeneracies with

no translation, we require ||t|| ≥ 1
2 .

We report results in Table 1 for models trained on 100K
samples using only U>U as features, comparing to chance
for context. We compare models trained on 100K samples.
Even when trained on 100K samples and estimating a gen-
eral problem case, the networks learn the function. Once
the data is even moderately constrained (2D Large), relative
errors drop considerably. This suggests that the function is
especially learnable under more constrained rotations.

3.4. Implementation Details

Full implementation details appear in the supplemental,
and we will release code for reproducibility. Our encoder
is a pretrained ResNet-18, which we truncate to only use
the first two of four modules, producing a 24 × 24 × 128
feature map; we use an additional Residual block to map to
feature size of 192 for the ViT. We use the Timm [67] ViT
implementation, and use ViT-Tiny with a truncated depth
of 5 plus our Essential Matrix Module. Outside of the pro-
posed changes, our Essential Matrix Module follows a stan-
dard Cross-Attention Transformer Block architecture and
normalization [33]. Positional encoding locations utilize
known intrinsics, x′i ≡ K−1[u′i, v

′
i, 1]
>, a manner similar

to [65]. Each head of the Essential Matrix Module pro-
duces a 64-D feature, which is 70-D after concatenating the
position encodings. With 3 heads, and the bilinear attention
done once per image, this results in 3 × 702 × 2 = 29K
features. We map this large feature to a hidden size of
512 for two hidden layers in our MLP before regressing
7D pose. We implement using PyTorch [44] and use the
LieTorch [62] extension for backpropogation of geodesic
losses on quaternions. We use learning rate of 5e-4 and
train using Adam [25] optimizer and 1cycle scheduler [58]
for 120k iterations with a batch size of 60 split over 10 GTX
1080 Tis, which takes about 1 day.

4. Experiments
We now evaluate the proposed method’s ability to es-

timate relative pose in comparison to the state of the art
in two settings that share common metrics and evaluation
settings (§4.1). Our first task (§4.2) is wide baseline rota-
tion and translation estimation, or estimating a rotation in
SO(3) and translation in R3 (i.e., including a scale). The
second task (§4.3) is wide baseline rotation, or estimating
a rotation in SO(3) but no translation. Finally, a crucial
argument for our approach is that the modifications of the
transformer architecture serve as an inductive bias for the
network. We examine this empirically with experiments on
substantially reduced data that test data efficiency (§4.4).

4.1. Metrics and Evaluation

For each method, we compute the rotation error (defined
as the rotation geodesic to the ground-truth) and translation
error (defined as the usual Euclidean distance to the ground
truth), and aggregate three summary statistics: the mean,
the median, and the percent of errors within a threshold
that is task-specific (e.g, 30◦) and will be described with
each dataset. These capture different aspects of the prob-
lem. Specifically, due to symmetries in the data, pose esti-
mation errors are often not unimodally distributed. Instead,
often many results are highly accurate and a few are wrong
by 90◦ or 180◦. The median error captures what a typi-
cal prediction error is like and is outlier robust; the mean
is the straight average and is therefore sensitive to outliers;
the percent within a threshold captures a sense of how many
predictions are “reasonable” for some threshold.

4.2. Wide Baseline Rotation and Translation

We begin by evaluating on our full problem, namely esti-
mating a rotation in SO(3) and translation, including scale,
in R3. We follow the setup of [22] to enable comparison
with a variety of existing work and published baselines.

Dataset. We use data from Matterport3D [6] consisting of
pairs of images with limited overlap (mean 2.3m translation,
53◦ rotation). This dataset is a re-rendering of a real cap-
ture, using the Habitat [56] system. The train/val/test set of
the dataset consist of 32K/5K/8K image pairs, respectively.
Following [22], we set the threshold for percent within a
threshold to 30◦ for rotation and 1m for translation.

Baselines and Ablations. Our primary comparison is the
Sparse Planes method of [22], a strong baseline estimat-
ing both rotation and translation (including scale). Sparse
Planes does joint reconstruction and pose estimation and
consists of: initial reconstruction and camera estimation,
discrete optimization, and a bundle-adjustment on SIFT fea-
tures [32] extracted from texture that has been made fronto-
parallel. The final step adds substantial complexity, so we
compare to (SparsePlanes [22] No Bundle) as well, which



Table 2. Translation and Rotation Performance on Matterport.
Ours is best among methods producing translation scale. All base-
lines supervise depth except [22] (Camera Br) and Ours.

Translation (m) Rotation (degrees)
Method Med.↓ Avg.↓ ≤1m↑ Med.↓ Avg.↓ ≤ 30↑
[52] + [51] 3.34 4.00 8.3 50.98 57.92 29.9
Assoc.3D [48] 2.17 2.50 14.8 42.09 52.97 38.1
[22] (Camera Br) 0.90 1.40 55.5 7.65 24.57 81.9
[22] (No Bundle) 0.88 1.36 56.5 7.58 22.84 83.7
[22] (Full) 0.63 1.25 66.6 7.33 22.78 83.4
PlaneFormers [1] 0.66 1.19 66.8 5.96 22.20 83.8
Ours 0.64 1.01 67.4 8.01 19.13 85.4
SuperGlue [55] - - - 3.88 24.17 77.8
LoFTR [60] - - - 0.71 11.11 90.5

Table 3. Essential Matrix Module Ablations on Matterport. All
three components of the Essential Matrix Module yield meaning-
ful improvement across metrics.

Translation (m) Rotation (degrees)
Method Med.↓ Avg.↓ ≤1m↑ Med.↓ Avg.↓ ≤30↑
CNN Pose Regressor 1.53 1.83 28.6 31.31 45.05 48.8
+ViT 1.47 1.79 30.1 29.9 43.33 50.1
+Bilinear Attention 1.13 1.49 44.5 9.76 28.36 73.1
+Dual Softmax 0.70 1.06 64.8 8.62 21.23 83.3
Full 0.64 1.01 67.4 8.01 19.13 85.4

omits the final bundle adjustment, but still requires opti-
mization. We also compare to the standalone pose estima-
tion branch as (Sparse Planes [22] Camera Branch). In
addition, we compare to concurrent work [1] which closely
builds off of Sparse Planes.

We next report three baselines used by [22]. The first is
(Associative 3D [48] camera branch), which is an improved
version of RPNet [12]. The second is the reconstruction-
based RGBD odometry method of Raposo et al. [52] ap-
plied to [51]. Third, we compare with (SuperGlue [55]),
using the settings from [22]. In addition, we compare to
LoFTR [60]. Like SuperGlue, LoFTR supervises corre-
spondences, and therefore requires depth supervision in ad-
dition to pose, and cannot recover translation scale.

Finally, we compare with four ablations that test the con-
tributions of our method. All methods use the same MLP
Regressor, and full descriptions of these appear in the sup-
plement. The first is (CNN Pose Regressor), which predicts
pose from concatenated base CNN extracted features. This
gives a sense of how a simple method does. The second
is (+ViT), which adds a ViT that is capped with standard
attention (Eqn. 1) on top of the backbone. This tests the
contribution of a ViT without the Essential Matrix Mod-
ule. The third is (+Bilinear) which replaces standard at-
tention (Eqn. 1) with bilinear attention, but without dual-
softmax and quadratic positional encodings. Finally, we re-
port (+Dual Softmax), which adds dual softmax.

Quantitative Results. We report results in Table 2. Joint
prediction of rotation and translation (including scale) on
wide-baseline pairs is a challenging problem. Non-trivial

Image 1 Sparse Plane (Full) Ours Ground Truth

Figure 3. Epipolar Lines on Matterport. Our predictions better
match true pose, particularly on large view changes.
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Figure 4. Error CDFs on Matterport. The proposed approach
shows increased robustness to large view changes.

methods [48, 51, 52] have less than 40% of predictions
within 30◦ of true rotation, and less than 20% of errors
within 1m of true translation. Methods that are most com-
petitive (LoFTR [60], SuperGlue [55], [22]) require depth
supervision in addition to pose, while the best rotation re-
sults ([60], [55]) are produced by correspondence-based
methods not predicting translation scale. Of methods pro-
ducing translation scale, ours typically performs best, and
it outperforms SuperGlue in both average rotation and per-
centage within 30◦.

Ablations, shown in Table 3, show the reasons for suc-
cess. As with [48, 51, 52], CNN and ViT models struggle at
the task. Adding bilinear attention reduces errors tremen-
dously – reducing median rotation error by two thirds –
while the dual softmax reduces errors further significantly.
Adding positional encodings further improves performance
across all measurements.

Analysis. Qualitative results, in Figure 3, are consistent
with quantitative findings. Namely, predicted pose more
closely matches ground truth on difficult examples, result-
ing in much better mean performance than baselines. Error
vs. view change is analyzed further in the Supplemental.
Figure 4 displays error CDFs on Matterpor Compared to the
most competitive baseline [22] (Full), the proposed method
has fewer very large errors.



Table 4. Rotation Performance on InteriorNet and StreetLearn. We train and evaluate on only overlapping images. “*” indicates the
method sometimes failed to produce pose estimation; errors were calculated only on successful image pairs. Gray text indicates failure
over 50% of test pairs. The proposed method outperforms alternatives almost universally and often significantly.

InteriorNet InteriorNet-T StreetLearn StreetLearn-T
Overlap Method Avg (◦ ↓) Med. (◦ ↓) 10 (% ↑) Avg (◦ ↓) Med. (◦ ↓) 10 (% ↑) Avg (◦ ↓) Med. (◦ ↓) 10 (% ↑) Avg (◦ ↓) Med. (◦ ↓) 10 (% ↑)

Large

SIFT* [32] 6.09 4.00 84.86 7.78 2.95 55.52 5.84 3.16 91.18 18.86 3.13 22.37
SuperPoint* [8] 5.40 3.53 87.10 5.46 2.79 65.97 6.23 3.61 91.18 6.38 1.79 16.45
Reg6D [74] 5.43 3.87 87.10 10.45 6.91 67.76 3.36 2.71 97.65 12.31 6.02 69.08
Cai et al. [5] 1.53 1.10 99.26 2.89 1.10 97.61 1.19 1.02 99.41 9.12 2.91 87.50
Ours 0.48 0.40 100.00 2.90 1.83 97.91 0.62 0.52 100.00 4.08 2.43 90.13

Small

SIFT* [32] 24.18 8.57 39.73 18.16 10.01 18.52 16.22 7.35 55.81 38.78 13.81 5.68
SuperPoint* [8] 16.72 8.43 21.58 11.61 5.82 11.73 19.29 7.60 24.58 6.80 6.85 0.95
Reg6D [74] 17.83 9.61 51.37 21.87 11.43 44.14 7.95 4.34 87.71 15.07 7.59 63.41
Cai et al. [5] 6.45 1.61 95.89 10.24 1.38 89.81 2.32 1.41 98.67 13.04 3.49 84.23
Ours 1.81 0.94 99.32 4.48 2.38 96.30 1.46 1.09 100.00 9.19 3.25 87.70

Table 5. Rotation Ablations InteriorNet and StreetLearn. (Sec-
ond best underlined). The ViT significantly improves over CNN
only. Components of the proposed model perform in different set-
tings, but the full model is often best and typically competitive
with the best ablation, while ablations sometimes do poorly (Bi-
linear Att. on InteriorNet Small, ViT on StreetLearn Small).

InteriorNet-T StreetLearn-T
Overlap Method Avg (◦ ↓) Med. (◦ ↓) 10 (% ↑) Avg (◦ ↓) Med. (◦ ↓) 10 (% ↑)

Large

CNN Pose Regressor 5.29 2.6 89.85 15.25 10.00 50.00
+ViT 2.99 1.64 96.72 3.52 2.56 94.74
+Bilinear Attention 3.25 1.49 97.31 4.73 2.68 92.76
+Dual Softmax 6.03 1.63 93.43 4.39 2.64 91.45
Full 2.90 1.83 97.91 4.08 2.43 90.13

Small

CNN Pose Regressor 19.79 4.05 69.44 29.95 15.22 34.07
+ViT 5.43 2.00 94.75 12.93 3.16 84.86
+Bilinear Attention 8.54 1.79 90.43 8.70 3.41 89.59
+Dual Softmax 10.44 1.96 89.51 10.74 3.24 87.07
Full 4.48 2.38 96.30 9.19 3.25 87.70

4.3. Wide Baseline Rotation

We next study wide baseline rotation, where we compare
with [5] and their baselines.

Datasets. We use the two datasets from [5], which were de-
rived from panoramic photos and follow the setup of [5].
The first dataset is InteriorNet [29], which consists of
10,050 panoramic views across 112 synthetic houses. Of
these, 82 houses are allocated for training and the remain-
ing 30 houses are used for testing. The dataset has 610k
image pairs (350K overlapping), with a test set of 1K pairs.
StreetLearn [39], consists of panoramic outdoor images
in New York City that have been scrubbed to ensure pri-
vacy (full details in Supplemental). This dataset has 1.1M
train pairs (460K with overlap), and 1K test pairs from a
set of 143K panoramas. We additionally evaluate on the
“InteriorNet-T” and “StreetLearn-T” datasets, which select
from different panoramas for each image in a pair, resulting
in translation in addition to rotation. This translation is not,
however, estimated in this setting. To facilitate comparisons
we use 10◦ as a threshold for rotation error following [5].
We use the setup of Cai et al. [5] using only overlapping
images, and breaking down overlap into large overlap (less
than 45◦ rotation) and small overlap (more than 45◦). Cai
et al. also conduct experiments on non-overlapping images;
we consider this beyond our scope, which is focused on the

case where correspondences may exist.

Baselines and Ablations. We compare to the state of
the art (Extreme Rotation [5]), which computes a cross-
correlation volume on paired image features, and uses a
CNN to classify pose. We also report this method’s base-
lines: Reg6D [74], which predicts a 6D representation from
concatenated image features, similar to the Associative3D
Camera Branch from §4.2 as well as correspondence base-
lines SIFT [32] and SuperPoint [8]. These baselines occa-
sionally fail. Following [5], we indicate failure on more
than 50% of the test set by marking the number in gray. We
report the same ablations as in §4.2.

Quantitative Results. The proposed method is typi-
cally better than all baselines across both InteriorNet and
StreetLearn, for both versions and overlap settings of the
dataset (Table 4). Often, the proposed method reduces error
compared to competing methods by more than half (e.g., In-
teriorNet Mean, Median with Large Overlap; StreetLearn-T
Mean with Large Overlap). Small overlap is an especially
difficult setting. For instance, on InteriorNet-T, all base-
lines have mean error above 10◦. Yet, the proposed method
is within 10◦ more than 96% of the time. Interestingly, me-
dian error on InteriorNet-T is worse than Cai et al. [5]. We
believe the large scale of InteriorNet is not the method’s
strongest setting, and the method provides strong inductive
bias for small data settings (see §4.4). Nevertheless, we
consider Cai et al. to be a strong baseline as it is specialized
to large angle changes.

Performance breakdown of the model is displayed in Ta-
ble 5. Adding a ViT is quite important, likely attributable
to the large scale of data available. Beyond the ViT, im-
provements by each step are more mixed compared to the
clear improvement of each step on Matterport. For instance,
adding the dual softmax without coordinate embeddings is
typically not helpful compared to using only Bilinear At-
tention. Yet, the full model performs best (best 5 times,
second best 3 times; Bilinear Attention is best 4 times, sec-
ond best twice). Moreover, the full model is rarely signifi-
cantly worse than any intermediate ablation. This suggests,
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Figure 5. Error vs. Rotation. The proposed method produces
high precision when faced with large view change.

as argued in §3, that all of the proposed components work
together. We emphasize these settings have extraordinary
numbers of views. §4.4 will show the substantially higher
data efficiency of the essential module.

Analysis. Qualitative results validate quantitative findings
in Fig. 5. While the evaluation datasets have huge rotations
across indoor and outdoor settings, the proposed model is
typically accurate, often even within 1% of true rotations.

4.4. Effectiveness on Smaller Datasets

One of the primary arguments for the use of the proposed
network structure is that it provides a useful inductive bias
by helping the network compute information that is known
to constrain the set of feasible rotations and translations. In
principle, since feedforward networks are universal approx-
imators [21], networks ought to be able to learn to estimate
relative pose with enough data. However, the right inductive
biases ought to let them learn faster.

We now examine performance as a function of number of
images. First, this helps empirically assess whether various
networks structures provide useful inductive biases. Sec-
ond, this is of practical concern since it tests data efficiency.

Datasets. We use InteriorNet-T and StreetLearn-T from
§4.3, with significantly reduced 32K train image pairs.
Collecting large-scale datasets such as these is challeng-
ing without a simulator or specialized company resources,
so this smaller scale may be more realistic for e.g. user-
collected posed images.

Ablations and Results. Our primary comparison is with
the ViT baseline. Because it is a near alternative to our pro-
posed Essential Matrix Module, we can measure the im-
pact of our main contributions. Results are presented in Ta-
ble 6, which is a reduced version of Table 5, with results
also on the 32K image train set. Across datasets, the pro-
posed method scales significantly better to a small train set.
Even in cases the ViT slightly outperformed our proposed

Table 6. Performance with limited data. The proposed method
scales better to small data than a typical learned model (e.g. ViT),
indicating better inductive biases.

InteriorNet-T
Full 32K

Avg Med % < 10◦ Avg Med % < 10◦

Large ViT 0.61 0.49 100.00 5.78 3.23 92.84
Full 0.48 0.40 100.00 4.44 2.58 95.82

Small ViT 1.44 1.09 100.00 11.89 4.38 78.70
Full 1.81 0.94 100.00 8.22 4.27 89.20

StreetLearn-T
Full 32K

Avg Med % < 10◦ Avg Med % < 10◦

Large ViT 3.52 2.56 94.74 11.51 7.69 56.58
Full 4.08 2.43 90.13 7.22 4.44 81.58

Small ViT 12.93 3.16 84.46 29.28 14.94 36.59
Full 9.19 3.25 87.70 13.29 5.55 71.72

full model with full set, the inductive biases of the proposed
method give it substantial improvement in the small setting.

5. Discussion

In this paper we presented a simple and interpretable
end-to-end approach for pose estimation. Our key techni-
cal contribution is to implicitly represent correspondences
from a ViT using an essential matrix module, from which
an MLP can estimate pose. Theoretical results show this
formulation can approximate the matrix U>U that is ana-
lyzed in the Eight Point algorithm; empirical results show
given this, the MLP can suitably estimate pose. While alter-
natives make additional assumptions about input or require
optimization, this method requires only paired RGB images
as input, and is competitive in a variety of settings and view-
point changes while being computationally efficient.

Limitations and Social Impact. The model is generally
robust across view change. However, other methods are
better suited for the two extremes in view change. In the
case of small view change, the transformer is limited in
terms of precision by the number of patches. Alternative
CNN-based methods such as [65] may more easily operate
upon high resolution. The model is also not prepared to pre-
dict pose on images with no overlap or correspondences;
classification-based work e.g. [5] is better suited for this.
Using datasets such as Matterport collected in nice homes
leads to models which will likely perform better in these
homes and possibly not as well in less expensive homes.
Using synthetic data such as InteriorNet may help combat
this bias. Training and evaluating on StreetView images
should be handled with special care, as these images can
contain personal information. The original authors blurred
faces in the dataset, and a random manual search of 500
images also revealed no personal identifying information.
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A. Appendix

Our supplement presents the following.

Additional experimental details for the paper’s main re-
sults. These consist of detailed network architectures (§B),
descriptions of datasets and data pre-processing (§C), and
additional analysis that would not fit in the main paper (§D).

Discussion of the Essential Matrix Module. We present
additional discussion and exposition of the Essential Ma-
trix Module. This consists of a more detailed derivation
of the fact that the unique entries of U>U can be written
by Φ>AΦ as described in the main paper (§E), how accu-
rately the network can compute Φ>AΦ in practice (§F), as
well as an explicit writing-out of one of the key steps of this
(§H). It also includes a detailed description of the experi-
ment done with synthetic data which appears in the method
section (§G).

B. Detailed Network Architectures

Our architecture is outlined below and detailed in the fol-
lowing two-page Table 7.

Backbone. Our backbone consists of a vanilla encoder of
Residual Modules and one Block, followed by a vanilla ViT.
The model ends with a three-layer MLP.

Essential Matrix Module. Recall from the paper, the Es-
sential Matrix Module is closely built off a standard Cross-
Attention Block. The changes we make are carefully cho-
sen to study their contribution to performance. Changes can
be seen in the “Essential Matrix Cross-Attn” block of the
architecture. First, the final dimension of query, key and
values is increased by a size of 6; positional encodings fill
these 6 new spaces for value matrices. Second, Softmax
is computed over both the last and second to last dimen-
sion of affinities, and multiplied elementwise. Finally, Bi-
Directional attention is computed, V.T@A@V . Note this
results in output of different shape than standard Cross-
Attention.

Baselines. Baselines use generally the same components as
our entire architecture, with very minor changes. This helps
us study our proposed contributions.

CNN Pose Regressor. CNN Pose Regressor follows our
model architecture, with the exception it only uses encoder,
and one pooling layer, before the MLP. The pooling layer
consists of two 1x1 Convs with Batchnorm (and ReLU be-
fore the second Conv). Feature size is reduced to 96, then
43; resulting in MLP input of 24768 = 43 ∗ 24 ∗ 24. We do
this so the input to the MLP is comparable to our method
(29400 = 2 ∗ 3 ∗ (64 + 6) ∗ (64 + 6)), and so this method
is less prone to poor overfitting. Early experiments with
bigger input size to MLP hurt performance. The CNN and
MLP are otherwise identical to ours.

+ViT. Starting from the CNN Pose Regressor, we simply
add the ViT Layers back from our architecture. This is
followed by a vanilla Cross-Attention block. This uses
the same pooling layer as the CNN. The Cross Attention-
Block can be distinguished from our Essential Matrix Mod-
ule by changing bidirectional attention, dual softmax and
positional encoding. Looking in the table, the differences
can be found in Essential Matrix Cross-Attn. First, affini-
ties are calculated using the standard (A@V ).T . Second,
Softmax is not applied over dim = −2. Third, values do
not get positional encodings.
+Bilinear Attention. This method uses our architecture as-
is, with the exception of dual softmax and positional encod-
ing. Looking in the table, the differences can be found in
Essential Matrix Cross-Attn. First, Softmax is not applied
over dim = −2. Second, values will not get positional en-
codings.
+Dual Softmax. This method uses our architecture as-is,
with the exception of positional encoding. Looking in the
table, the difference can be found in Essential Matrix Cross-
Attn – values will no longer get positional encodings.

C. Dataset Information

Matterport3D. Matterport3D is a collection of scanned in-
door scenes. We use the image pairs Jin et al. collected
using the Habitat simulator. The number of image pairs in
the train, val and test set are 31932, 4707, and 7996, respec-
tively. Images are originally 480x640, but are downsampled
to 256x256 for models. Images are collected using a cam-
era at random height of 1.5-1.6m, with a downward tilt of
11 degrees to simulate human perspective. Candidate pairs
are randomly sampled cameras within each room. Next, Jin
et al. detect planes, and select pairs such that at least 3
planes are shared between images, and at least 3 planes are
unique to each image. The average rotation is 53 degrees,
translation 2.3m, and overlap 21%.
InteriorNet. InteriorNet consists of 10,050 indoor
panoramic views across 112 synthetic houses. 82 houses
are used for training and 30 are used for testing. We sample
paired images from the panoramas using the same proce-
dure as Cai et al. We also follow their image selection pro-
cess, which samples images over a uniform distribution of
angles (yaw in [-180, 180]; pitch in [-30,30]) within panora-
mas. Their process samples 100 images per panorama, fil-
ters images too close to walls, and does not apply roll; argu-
ing this does not affect performance. Images are 256x256
and have 90◦ FOV. For full details see the original paper.

For the InteriorNet-T dataset, pairs are selected from dif-
ferent panoramas, resulting in translation; for InteriorNet,
pairs are selected from the same panorama, resulting in no
translation. Translations in InteriorNet-T are selected to be
less than 3m. The full set of extracted image pairs on Inte-



Table 7. Model Architecture. Detailed model architecture, broken down into sub-components. Please note, some components have more
complicated structure, so we define operations at the beginning and forward pass at the bottom. For instance, in the Residual Module we
define the two branches, followed by the forward pass calling each branch. We use H = 24, D = 192, Nh = 3 in accordance with
standard ViT-Tiny. We do not define ResNet Blocks below, as we use the standard implementation available publicly.

Overview
Operation Output Shape

Input Image 2× 3× 256× 256
Encoder 2×H ×H ×D
ViT Layer (x5) 2×H ×H ×D
Essential Matrix Module 2×Nh × (D/Nh + 6)× (D/Nh + 6)
MLP 7

Encoder
Operation Output Shape

ResNet-18 Block 1 2× 56× 56× 64
ResNet-18 Block 2 2×H × 28× 128
Residual Module 2×H ×H ×D

MLP
Operation Output Shape

Linear & ReLU (x2) 512
Linear & ReLU 7

Residual Module
Operation Output Shape

Branch A
2D Conv k=3 s=1, BN, ReLU 2× 28× 28×D
2D Conv k=5 s=1, BN, ReLU 2×H ×H ×D

Branch B
2D Conv k=5 s=1, BN 2×H ×H ×D

Forward Pass
ReLU(Branch A + Branch B) 2×H ×H ×D

riorNet is 250K ( 610K for InteriorNet-T). Note these train
set sizes are smaller than reported in Cai et al. (roughly 1M
and 700k) but were supplied by the authors directly and via
their repo; these sets replicate their reported paper results.
Both have a test set of 1K pairs. We consider only overlap-
ping pairs, making the train set smaller: InteriorNet: 150K,
InteriorNet-T: 350K. The test set sizes are also reduced af-
ter filtering for overlap. Pairs are further broken down into
large or small overlap, thresholded using rotation of 45 de-
grees. InteriorNet test set: 695 pairs (403 large overlap, 292
small overlap). InteriorNet-T test set: 659 pairs (335 large
overlap, 324 small overlap).

StreetLearn. StreetLearn consists of 143K panoramic out-
door views in New York City and Pittsburgh; we follow the
setup of Cai et al. which uses 56K panoramas from Man-

hattan, with 1K randomly allocated for testing. We also
follow their image selection process, which samples images
over a uniform distribution of angles (yaw in [-180, 180];
pitch in [-45,45]) within panoramas. Their process samples
100 images per panorama, and does not apply roll; argu-
ing this does not affect performance. Images are 256x256
and have 90◦ FOV. For full details see the original paper.
For the StreetLearn-T dataset, pairs are selected from dif-
ferent panoramas, resulting in translation; for StreetLearn,
pairs are selected from the same panorama, resulting in no
translation. Translations in StreetLearn-T are selected to
be less than 10m. The full set of extracted image pairs
on StreetLearn is 1.1M (670K for StreetLearn-T). Both
have a test set of 1K pairs. We consider only overlapping
pairs, making the train set smaller: StreetLearn: 460K,
StreetLearn-T: 260K. The test set sizes are also reduced



Table 8. Model Architecture: Essential Matrix Module. Details of essential matrix module and ViT layer.

ViT Layer
Operation Output Shape

Attn
Q,K,V = Linear 2×Nh × (H ×H)× (D/Nh)
A = Softmax(Q @ K.T, dim=-1) 2×Nh × (H ×H)× (H ×H)
(A @ V).T 2×H ×H ×D
Linear 2×H ×H ×D

MLP
Linear & GeLU 2×H ×H × (D × 4)
Linear 2×H ×H ×D

Forward Pass
Attn(LayerNorm) + Residual 2×H ×H ×D
MLP(LayerNorm) + Residual 2×H ×H ×D

Essential Matrix Module
Operation Output Shape

MLP
Linear & GeLU 2×H ×H × (D × 4)
Linear 2×H ×H ×D

Forward Pass
Essential Matrix Cross-Attn(LayerNorm) + Residual 2×Nh × (D/Nh + 6)× (D/Nh + 6)
MLP(LayerNorm) + Residual 2×Nh × (D/Nh + 6)× (D/Nh + 6)

Essential Matrix Cross-Attn
Operation Output Shape

Attn Branch
A = Softmax(Q @ K.T, dim=-1) × Softmax(Q @ K.T, dim=-2) Nh × (H ×H)× (H ×H)
(V.T @ A @ V).T Nh × (D/Nh + 6)× (D/Nh + 6)
Linear Nh × (D/Nh + 6)× (D/Nh + 6)

Forward Pass
Q1,K1, V1 = Linear(Input[0]) Nh × (H ×H)× (D/Nh + 6)
Q2,K2, V2 = Linear(Input[1]) Nh × (H ×H)× (D/Nh + 6)
V1[...,−6 :], V2[...,−6 :] = Pos Encoding Nh × (H ×H)× (D/Nh + 6)
Concat(Attn Branch(Q1,K2, V2), Attn Branch(Q2,K1, V1)) 2×Nh × (D/Nh + 6)× (D/Nh + 6)

after filtering for overlap. Pairs are further broken down
into large or small overlap, thresholded using rotation of 45
degrees. StreetLearn test set: 471 pairs (170 large overlap,
301 small overlap). StreetLearn-T test set: 469 pairs (152
large overlap, 317 small overlap).

StreetLearn panoramas were captured based on Google
Street View, and therefore contain real people. The authors
of the dataset blurred all faces and license plates, and manu-
ally reviewed images for privacy. The dataset is distributed
only upon request. If individuals request for a panorama to

be taken down or blurred, the dataset is updated to reflect
the request.

D. Additional Analysis

Error against GT. In Figures 6 and 7, we report error
vs. magnitude for rotation and translation, respectively;
for our method and baseline Sparse Planes. Lines are fit
by applying adaptive kernel density estimation. For both
rotation and translation, both methods show similar gen-
eral trends, increasing error as magnitude increases. In the
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Figure 6. Mean Error as a Function of Magnitude: Rotation.
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Figure 7. Mean Error as a Function of Magnitude: Translation.

Table 9. Generalization Across Datasets, training Cai et al. and
Ours on the opposite of IN-T and SL-T. SuperGlue is trained on
ScanNet; the only public version. In format “Large / Small” Over-
lap.

InteriorNet-T StreetLearn-T
Method Avg (◦ ↓) Med. (◦ ↓) 10 (% ↑) Avg (◦ ↓) Med. (◦ ↓) 10 (% ↑)
SuperGlue 35.9 / 85.4 35.9 / 81.6 5.4 / 0.0 48.9 / 85.5 42.9 / 82.4 2.0 / 0.0
Cai et al. 31.2 / 67.4 9.3 / 84.4 52.0 / 23.8 43.0 / 71.4 21.8 / 72.5 32.4 / 9.9
Ours 18.7 / 58.6 11.1 / 66.4 45.1 / 10.5 28.6 / 40.7 14.3 / 24.0 39.5 / 27.8

case of very small rotations (i.e. < 30◦) or translations
(i.e. < 3m), Sparse Planes is quite competitive with the
proposed method. However, beyond this magnitude, our
method tends to be more robust, outperforming until the
very most extreme rotations. This is consistent with the
qualitative results and CDFs plotted in the paper.

Generalization Across Datasets. A good measure of in-
ductive bias is to evaluate methods when trained on one
dataset and tested without fine-tuning on another. We eval-
uate our method against the most competitive baselines
across datasets in Table 9. We tend to generalize better,
especially in average error, though indoor←→ outdoor does
cause a large drop in performance.

Is ViT Backbone Needed? Our proposed method appends
an Essential Matrix Module layer to the end of 5 ViT lay-
ers. In Table 10, we study the effect of replacing the 5 ViT
layers with a comparable CNN-based backbone, a modified
PWC-Net [59]. PWC-Net is a good choice as it predicts op-
tical flow, a task closely related to correspondence estima-
tion and therefore useful for downstream pose estimation;
TartanVO [65] uses this extractor before predicting relative
pose. We use PWC-Net out of the box except for modifica-
tions to feature and stride size so that it takes extracted fea-
tures at the same resolution (24x24) and feature size (192)
as the ViT, and produces output features at this same reso-
lution and feature size. The CNN-based backbone performs

Table 10. Model Backbone Ablations. A ViT backbone is not
necessary for competitive performance; a CNN replacement per-
forms similarly if we keep the Essential Matrix Module.

InteriorNet-T StreetLearn-T
Overlap Method Avg (◦ ↓) Med. (◦ ↓) 10 (% ↑) Avg (◦ ↓) Med. (◦ ↓) 10 (% ↑)

Large CNN 5.36 3.62 94.03 3.74 2.29 94.74
ViT (Ours) 2.90 1.83 97.91 4.08 2.43 90.13

Small CNN 8.31 4.58 86.42 7.30 3.03 90.54
ViT (Ours) 4.48 2.38 96.30 9.19 3.25 87.70

similarly to the ViT backbone – better on StreetLearn-T but
worse on InteriorNet-T. This indicates the Essential Matrix
Module may be flexible for use with more generic models.
Recall from Tables 3, 5 and 6 in the main paper, the ViT
backbone is not the primary reason for our success – the
Essential Matrix Module is a helpful inductive bias, partic-
ularly in the case of limited data.

Can one Construct the Essential Matrix Module from
Conv Kernels? One can construct the essential matrix from
Φ>AΦ, which is similar to the attention operation per-
formed in ViTs but not to any operation in Conv layers.

Can Essential Matrix Module Output be used for the 8-
Point Algorithm? No, it is an inductive bias used for pose
prediction. An analogy is convolution layers, which have
the capacity to detect edges but which do not necessarily
just detect edges when learned. Likewise, the EM Module
has the capacity to represent information like U>U, from
which one could compute the Essential matrix. Our results
show that this inductive bias helps learned pose estimation.
We also note that some of the EM Module’s output (the up-
per D × D submatrix) are image features that cannot be
used in the 8-Point algorithm.

How closely does EMM’s ∼ U>U match true U>U?
We save EMM ∼ U>U output for the Matterport test set
and compare to true U>U, computed by projecting 100k
points in a 10x10x10 box into both images using ground
truth pose. Note the EMM computes cross-attention in both
img1→ img2 and img2→ img1, and has attention 3 heads
for each direction. We therefore have 6∼ U>U to compare
to the ground truth. We measure rank correlation between
entries of ∼ U>U and U>U.

As we see in Figure 8 (total correlation values), there is a
nontrivial rank correlation between EMM ∼ U>U and the
true U>U. This correlation varies some on a per-head and
per-direction basis, which is not surprising given directions
and heads are concatenated before pose regression, and may
be used for differing purposes and extents. Beyond concate-
nating heads, one important reason correlation is not higher
is that ∼ U>U is followed by linear projection and nor-
malization layers before pose regression. Since there is no
constraint on ∼ U>U to match the true U>U, the end-to-
end system is instead encouraged to learn pose optimally,
with this structure used as an inductive bias. Nevertheless,
the positive correlation between∼ U>U and U>U is con-
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Figure 8. Distribution of rank correlations between ground-truth U>U and the U>U as computed by the transformer. We re-arrange the
6 × 6 bottom sub-matrix to be 9 × 9 and then compute the Spearman rank correlation per-image (which ranges from -1 to 1). We plot
histograms of these rank correlations for each direction (i.e., image 1 or image 2) and each of the three transformer heads. Even though
the matrices computed by the transformers are not used in the same way as in the 8-point algorithm, we find substantial rank correlation
between the two.

sistent with our expectations the EMM is in fact computing
similar positional structure to the eight point algorithm.

We visualize ∼ U>U output of individual image pairs
in Figure D. Here we see clear examples of the varying,
but mostly positive and meaningful, correlation between ac-
tual ∼ U>U and output from different heads and direc-
tions. In addition, comparison of individual outputs in the
9x9 ∼ U>U tends to show similar cells with large activa-
tion across heads, regardless of actual correlation. We em-
phasize we should not expect ∼ U>U to precisely match
U>U.

Why not use 8-Point Coefficients as Φ? Using 8-point co-
efficients as Φ (Eqn. 13) actually leads to the same attention
output entries as ours (Eqn. 11), only ours has the advantage
of being more compact, as it doesn’t duplicate entries. This
is detailed in Sec. H.

How is Scale Ambiguity Handled? The model is trained
end-to-end using translation loss with scale, leaving the
network free to learn to overcome the scale ambiguity via
recognition. We believe this is due to a mix of a distribution
over likely relative poses inside scenes as well as familiar
objects. Essential Matrix Module output mixes learned ap-
pearance features V (which can encode familiar objects),
positional encodings Φ, and their interaction. Since Φ uses
intrinsics (L476), features can model varying cameras.

Additional Qualitative Results: Matterport. In Figure
10, we see the proposed method generates Epipolar lines
generally similar to true view changes. This is consistent
with random rotation and translation errors in Figure 11,
which are generally small. Not surprisingly, random results
in this challenging setting are also sometimes poor, e.g. the
top left Epipolar example, or the top left rotation error ex-
ample. Sorting by error in Figure 12, we see the general
trend of increased view change being associated with in-
creased error, which is consistent with our Error against GT
study.
Additional Qualitative Results: InteriorNet and
StreetLearn. In Figure 13, we see random rotation and
translation errors, which are generally quite small. Random
results in these datasets are not often poor, but have some
weaker examples – e.g. the bottom row of StreetLearn-T
has most errors above 1◦. Sorting by error in Figure 14,
we again see the trend of increased view change being
associated with increased error. Yet, results are often
quite good even in very high rotations (e.g. InteriorNet all
examples).
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Figure 9. Selected examples of the actual and transformer U>U matrices for three examples. Top left: actual U>U. Each row shows
a different direction (i.e., image 1 or image 2) and each column shows a different transformer head (i.e., one of the three heads). The
transformer matrix is actually 6× 6, but we re-arrange it to be the 9× 9U>U matrix.
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Figure 10. Random Results on Matterport: Epipolar Lines.
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Figure 11. Random Results on Matterport.
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Figure 12. Results by error on Matterport.
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Figure 13. Random Results on InteriorNet and StreetLearn.
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Figure 14. Results by error on InteriorNet and StreetLearn.



E. Derivation of the Unique Entries of U>U

Our goal is to show that the unique entries of U>U that
is used in the Eight Point Algorithm can be computed as
Φ>AΦ for an attention matrix A ∈ {0, 1}P×P and Φ ∈
RP×6 as defined in the main paper.
Setup. GivenN correspondences, the eight-point algorithm
constructs a matrix U ∈ RN×9 row-wise via the Kronecker
products of the homogeneous coordinates of the correspon-
dences involved. Define xi = [ui, vi, 1] and x′ = [u′i, v

′
i, 1].

Then the ith row of U is

Ui,: =
[
uiu
′
i uiv

′
i ui viu

′
i viv

′
i vi u′i v′i 1

]
(4)

or more compactly,

Ui,: = (xi ⊗ x′i)
>. (5)

Note that when estimating the Essential matrix, one uses
xi ≡ K−1[ui, vi, 1]

> and x′i ≡ K−1[u′i, v
′
i, 1]
>. Since

these coordinates can be rescaled by any arbitrary non-zero
scalar, we assume that the last coordinate is 1.
Usual approach. Given correct correspondences, the
eigenvector of U>U ∈ R9×9 that corresponds to the small-
est eigenvector is the Essential or Fundamental matrix. Usu-
ally, the matrix is not rank-deficient, and so one reshapes the
eigenvector and then performs rank-reduction.
Alternate approach. We will now show that the unique en-
tries of U>U can be computed in an alternate fashion using
a setup that is amenable to computation via a transformer.
We’ll start with the following basic substitutions and clean-
ing up:

U>U =

N∑
i=1

U>i,:Ui,: =

N∑
i=1

(xi ⊗ x′i)(xi ⊗ x′i)
>. (6)

We’ll first rewrite the interior of the sum, and then the sum
itself.
Rewriting U>i,:Ui,: with a basis expansion. We’ll tackle the
interior of the sum first. While U>i,:Ui,: = (xi ⊗ x′i)(xi ⊗
x′i)
> ∈ R9×9 and thus has 81 entries, there are only 36

unique entries. The smaller number of entries can be seen
mechanically via direct expansion (see §H to see this). It
can also be reasoned out by distributing transposes and us-
ing the mixed product property to rewrite it as

(xi ⊗ x′i)(xi ⊗ x′i)
> = (xix

>
i )⊗ (x′ix

′
i
>
). (7)

Note that while xix
>
i has 9 entries, it only has 6 unique

entries (1, u, v, uv, u2, v2). Likewise, x′ix
′
i
> has 6 unique

entries (1, u′, v′, u′v′, u′2, v′2). Therefore, their Kronecker
product (xix

>
i )⊗ (x′ix

′
i
>
) has only 36 unique entries.

We can create a 6 × 6 matrix containing the unique en-
tries of U>i,:Ui,: by applying a basis expansion to the co-
ordinates. Let us define φ([u, v, 1]) = [1, u, v, uv, u2, v2].

Then the unique entries of U>i,:Ui,: ∈ R9×9 can be writ-
ten as φ(xi)φ(x

′
i)
> ∈ R6×6. This means that the unique

entries of U>U are given by

N∑
i=1

φ(xi)φ(x
′
i)
>. (8)

As an additional benefit, this factorization separates the
terms involving each image into separate components.
Making the sum implicit. We next rewrite the sum implic-
itly by assuming each correspondence lies on a fixed grid.
Given a grid of P patches in each image, we assume that pj

is the jth patch’s location. Then, rather than have N corre-
spondences, we can define the correspondences implicitly
via an indicator matrix A ∈ {0, 1}P×P such that Aj,k = 1
if and only if points pk and pj are in correspondence and
0 otherwise. If each correspondence is on each patch, then
we can rewrite

N∑
i=1

φ(xi)φ(x
′
i)
> =

P∑
j=1

P∑
k=1

φ(pk)Aj,kφ(p
′
j)
>. (9)

This can be further simplified by gathering the basis ex-
panded coordinates of the grid in a matrix Φ ∈ RP×6

such that Φj,: = φ(pj)
>. Then φ(pk)Aj,kφ(p

′
j)
> =

Φ>k,:Aj,kΦj,:, and so Equation 9 can be rewritten as

P∑
j=1

P∑
k=1

Φ>k,:Aj,kΦj,: = Φ>AΦ, (10)

and therefore the unique entries of U>U can be compactly
written as Φ>AΦ.

F. Discussion of Limitations
The Φ>AΦ expression is exact when: (1) every corre-

spondence can be represented as one of the P patches; and
(2) the attention matrix A produced by the ViT represents
correspondence and is binary. Without an explicit binariza-
tion of attention and infinitely small patches, the Essential
Matrix Module can, at best, compute an approximation. We
now discuss how close this approximation can get.

The closeness of these approximation depends in part on
the network architecture and field of view. Throughout, we
use patches that are arrayed in a 24× 24 grid.
Representing Each Correspondence as a Patch. We re-
place each correspondence with its equivalent patch, ef-
fectively quantizing the correspondence locations. With
patches that are the size of pixels, this has close to no im-
pact on the accuracy of estimating pose; if one represents
the image with a handful of patches, this clearly ought to
have a large impact on the accuracy. We now analyze the
impact empirically.
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Figure 15. Correspondence quantization error as a function of the
number of patches for rotation and translation. We use a patch
count of 24× 24, which has a moderate quantization error. How-
ever, since transformers can contain sub-patch information implic-
itly, this quantization may be considerably lower.

Defining Quantization Error. For a given quantization level
q (i.e., number of patches that uniformly divide the image
along each axis), we generated 10,000 instances of synthetic
correspondence by: sampling a relative camera pose with
uniform Euler angles, and translation∼Unif(−1, 1), as well
as a set of 3D points ∼Unif(−1, 1). We render these points
to the images using the Matterport3D intrinsics producing a
set of correspondences (xi, yi) ↔ (x′i, y

′
i). We then com-

pute the relative pose two ways: first, we do this with the
original correspondences, yielding Ro and to; second, we
do it with the correspondences uniformly quantized to q lev-
els, which yields estimates Rq and tq . We then define the
quantization error as the rotation geodesic between Ro and
Rq as well as the angle between to and tq .

We then plot the median quantization error per quan-
tization level, along with 50% and 90% intervals in Fig-
ure 15. The quantization error rapidly decreases as patch
size increases. We use a patch count of 24 × 24 in this
work, which corresponds to a moderate quantization er-
ror (d(Ro,Rq)≈10◦, d(to, tq)≈7◦). Transformer tokens
can represent sub-patch information, and once the patch
count reaches 96 × 96, the errors become quite small
(d(Ro,Rq)≈2.5◦, d(to, tq)≈1.6◦).
Producing A. We now discuss how closely a transformer
can its attention A = norm(QK>) match the binarized
matrix that our setup uses. We divide this into two cases:
patches that have correspondence and patches without cor-
respondence. We refer to the total contribution as the total
size of the weights for a patch j, or

∑P
k=1 Aj,k.

Patches with correspondence. If patch j has a correspon-
dence with patch k, then we would like Aj,k = 1 and
Aj,k′ = 0 for all k′ 6= k. Standard attention cannot ex-
actly reach this, but can get arbitrarily close by making its
dot product (QK>),k as high as possible. Thus the total
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Figure 16. Fraction of attention contributed by matches as a frac-
tion of prevalence of matches. Dual softmax enables matches to
rapidly dominate the attention matrix’s entries.

contribution of a matching patch j
∑P

k=1 Aj,k≈1.
Patches without correspondence. If patch j has no corre-
spondence, then we would like Aj,k′ = 0 for all k′. This
is impossible under standard attention. We can get this
to be as close to 0 as possible, by the following: make
(QK>)j,: and (QK>):,j all equal, which in turn makes the
resulting softmax distributions uniform. In turn this makes
softmax(QK>)j,k′ = softmax(QK>)k′,j = 1/P . Under
dual-softmax, then Aj,k′ = 1/P 2 for all k′. Thus, the total
contribution of a patch j is

∑P
k′=1 1/P

2 = 1/P .
Together, this means that with dual softmax, the vast ma-

jority of the attention matrix’s energy comes from matches.
We do a simple experiment, assuming that (QK>)j,k =
100 if patches j and k match and 1 otherwise. We can
quantify the fraction of the attention that is from matches
by examining the fraction of the resulting matrix A =
norm(QK>) that corresponds to matches. We plot this as
a function of the prevalence of matches in Fig. 16, compar-
ing regular and dual softmax. With dual softmax, a handful
of matches dominate the attention, whereas for regular soft-
max, attention increases linearly.

G. Synthetic Experimental Details

Datasets. For each dataset, we generate an instance con-
sisting of a scene and relative camera pose. These can
be used to derive features that are suitable for training.
Scenes: Each scene consists of a points drawn uniformly
inside a sphere with center c with its coordinates indepen-
dently and identically sampled from Unif(− 1

2 ,
1
2 ) and ra-

dius r∼Unif( 1
2 ,

3
2 ). This sampling is done with rejection

sampling. Relative Camera Pose: We generate Euler angles
(θx, θy, θz) for the three axes, and a translation vector t. In
all cases, we reject samples with ||t|| ≤ 1

2 .

1. 3D (General 3D Motion): θx, θy, θz ∼ Unif(0, 360◦);



tx, ty, tz ∼ Unif(−1, 1).

2. 2D Large (Large-Rotation Motion In XZ plane): θy ∼
Normal(0, 25◦), θx, θz ∼ Normal(0, 1.25◦); tx, tz ∼
Normal(0, 1

3 ), ty ∼ Normal(0, 1
60 ).

3. 2D Medium (Medium-Rotation Motion In XZ plane):
θy ∼ Normal(0, 5◦), θx, θz ∼ Normal(0, 0.25◦);
tx, tz ∼ Normal(0, 1

3 ), ty ∼ Normal(0, 1
60 ).

4. 2D Small (Small-Rotation Motion In XZ plane): θy ∼
Normal(0, 1◦), θx, θz ∼ Normal(0, 0.05◦); tx, tz ∼
Normal(0, 1

3 ), ty ∼ Normal(0, 1
60 ).

Given a scene and relative camera pose, we project the
points onto a virtual camera with height and width 800
units, a focal length of 800 units and principal point of 400
units. We record the point if it is in front of the camera, and
on the virtual sensor. We reject the image pair and scene if
fewer than 100 points out of 10K random points are valid
for both cameras.
Input Feature. Given a 3D point, we denote its projec-
tion into image 1 as x and its projection into image 2 as x′.
Given the set of valid points, we compute the explicit form
of U>U with two modifications. First, for numerical sta-
bility we divide each coordinate by the width of the image
and subtract 1/2, which centers the data. Second, to make
the feature independent of the number of correspondences,
we normalize by the number of points to obtain 1

N U>U
rather than U>U. These are identical from the perspective
of eigenvectors, but normalizing makes the feature indep-
dendent of the number of points.
Method. For each task, we train a multilayer perceptron
consisting of 3 hidden layers with 4096 units each. Each
hidden layer is capped with a leaky ReLU. We predict a
normalized vector (3D for translation direction, 4D for ro-
tation).



H. Verifying that φ(x)φ(x′) contains all the terms needed for U>U

To enable visually verifying Equation 8, we’ll show a visual expansion. To avoid notational clutter, we will drop the ith
index and deal with x = [u, v, 1] and x′ = [u′, v′, 1]. Our goal is to show that (x ⊗ x′)>(x ⊗ x′) has the same entries as
φ(x)φ(x′)>. We’ll first expand out φ(x)φ(x′)>. When factored out,

φ(x)φ(x′)> =



1 u′ v′ u′v′ u′
2

v′
2

u uu′ uv′ uu′v′ uu′
2

uv′
2

v vu′ vv′ vu′v′ vu′
2

vv′
2

uv uvu′ uvv′ uvu′v′ uvu′
2

uvv′
2

u2 u2u′ u2v′ u2u′v′ u2u′
2

u2v′
2

v2 v2u′ v2v′ v2u′v′ v2u′
2

v2v′
2


. (11)

We color the terms according to which row they appear in φ(x)φ(x′)>. The matrix created for each correspondence is
(x⊗ x′)>(x⊗ x′). We’ll first define (x⊗ x′):

(x⊗ x′) =
[
uu′ uv′ u vu′ vv′ v u′ v′ 1

]
. (12)

We can then compute the outer product (x ⊗ x′)>(x ⊗ x′). This is highly redundant – note that the ith row and ith column
are identical. More specifically,

(x⊗ x′)>(x⊗ x′) =



u2u′
2

u2u′v′ u2u′ uvu′
2

uvu′v′ uvu′ uu′
2

uu′v′ uu′

u2u′v′ u2v′
2

u2v′ uvu′v′ uvv′
2

uvv′ uu′v′ uv′
2

uv′

u2u′ u2v′ u2 uvu′ uvv′ uv uu′ uv′ u

uvu′
2

uvu′v′ uvu′ v2u′
2

v2u′v′ v2u′ vu′
2

vu′v′ vu′

uvu′v′ uvv′
2

uvv′ v2u′v′ v2v′
2

v2v′ vu′v′ vv′
2

vv′

uvu′ uvv′ uv v2u′ v2v′ v2 vu′ vv′ v

uu′
2

uu′v′ uu′ vu′
2

vu′v′ vu′ u′
2

u′v′ u′

uu′v′ uv′
2

uv′ vu′v′ vv′
2

vv′ u′v′ v′
2

v′

uu′ uv′ u vu′ vv′ v u′ v′ 1


(13)

Note that the rows of φ(x)φ(x′)> appear in 3 × 3 blocks inside (x ⊗ x′)>(x ⊗ x′). In particular, inside each 3 × 3 block,
the columns of the φ(x)φ(x′)> appear in the following order: 5 4 2

4 6 3
2 3 1

 . (14)
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