
PixelSynth: Generating a 3D-Consistent Experience from a Single Image:
Supplemental Material

Chris Rockwell David F. Fouhey
University of Michigan

Justin Johnson

Video results available on the paper website give a thor-
ough sense of model quality and consistency. As stated
in the paper, the proposed method tends to produce high-
quality, consistent scenes. In contrast, baselines such as
SynSin – 6X are unable to create content, and ablations such
as No 3D Accumulation are wildly inconsistent. These re-
sults are best seen in video; and are available at this URL:
https://crockwell.github.io/pixelsynth/#video results

The pdf portion of the supplemental material shows: de-
tailed descriptions of model architectures (Section 1); im-
plementation details (Section 2); details about the experi-
mental setup (Section 3); additional results (Section 4); and
additional and A/B testing details (Section 5).

1. Model Architecture

As stated in the paper, a forward pass of the model takes
in a single image and produces a consistent image in a
novel view p. This involves multiple components: a depth
module D that maps images to depthmaps (producing point
clouds); a projector π that projects a point cloud to a novel
view; an outpainter O that can outpaint missing pixels by
autoregressive modeling on the latent space of a VQ-VAE;
and a refinement R module that adds details and corrects
mistakes on a full image. We now provide more architec-
tural details for each component; source code is available at
https://github.com/crockwell/pixelsynth.

Depth Module D: The Depth Module takes in a 256 ×
256× 3 image and predicts a depth for each pixel, yielding
a 256× 256× 1 depthmap. For fair comparison, we follow
the U-Net used in SynSin [6], which consists of 8 encoding
blocks that are mirrored by 8 decoding blocks.

Encoder: Each encoder block consists of a convolution
(size: 4 × 4 / stride 2 / padding 1) followed by BatchNorm
and leaky ReLU (negative slope of 0.2). Each block halves
the width and height. The first convolution has 32 filters
(mapping 3 channels to 32 channels); filter counts double at
each block until reaching 256; they then remain constant.

Decoder: The decoder mirrors the encoder. Each block

consists of a ReLU, 2× bilinear upsampling, convolution
(3×3 / stride 1 / padding 1), and BatchNorm (except the last
layer). Mirroring the encoder, filter counts remain the same
(256) until the feature map has been upsampled to 1

16 th of
the input size. Filter counts then start halving. The last
block does not have BatchNorm and has a final tanh at the
top of the network.

Projector π: The Projector takes a colored point cloud and
pose p and projects it as if seen at p. This produces a
256× 256× 3 image along with an indication that of which
pixels were projected to and which need to be outpainted.
We implement the projection with the point cloud rendering
functions from Pytorch3D [3]. Our design decisions follow
SynSin [6] for fair comparison: We alpha-composite points
in the z-buffer and accumulate within a radius of 4 pixels.

We find that one change is important for autoregressive
outpainting: we do not consider reprojected pixels at the
edge of the visible region. Pixels that fall just outside the
projected point cloud’s silhouette can be non-zero: each
rendered pixel is a function of the projected points within
a radius, and points just outside the silhouette are the result
of interpolating some points and the missing regions. If we
do not remove this, autoregressive outpainting begins with
a border that is the mean color, which it tends to continue.
We prevent this by treating border pixels as background/to-
be-outpainted.

Outpainter O: The Outpainter takes as input the 256×256
reprojection from the Projector, possibly including large
missing regions, and outpaints to a full image. This consists
of performing autoregressive outpainting on the latent space
of an autoencoder. Crucially, the autoregressive model fol-
lows an image-specific order because each image and new
pose yields different missing regions. We describe the au-
toencoder, followed by the autoregressive model, then the
autoregressive order. Our design decisions aim to make
lightweight versions of VQVAE2 [4] for the autoencoder
and the PixelCNN++ [5] used in Locally Masked Convolu-
tions [2] for the autoregressive model.
Autoencoder: We follow a lightweight adaptation of VQ-

1

https://crockwell.github.io/pixelsynth/#video_results
https://github.com/crockwell/pixelsynth


VAE2 [4] that maps a 256× 256× 3 input to a 32× 32× 1
quantized embedding space Z and back. The encoder con-
sists of first 3 convolution blocks followed by 2 ResNet
blocks, then 2 convolution blocks and 2 ResNet blocks. The
encoder produces a 32 × 32 × 64 continuous output; each
pixel in the encoded continous space is quantized to an em-
bedding Zi,j,1 ∈ Z512

1 . The decoder first upsamples using
a transpose convolution followed by a convolution. Then,
it mirrors the encoder with 2 ResNet blocks followed by 2
transpose convolution blocks to produce a 256 × 256 × 3
output.

Autoregressive model: The autoregressive model is a
lightweight PixelCNN++ [5] that produces, as output, a dis-
tribution over the 512 possible quantized embedding values.
Every convolution in the network uses locally-masked con-
volutions [2] for custom completion ordering. We follow
the general design used by Locally Masked Convolutions
[2] on CIFAR-10 consisting of 30 Gated ResNet blocks with
160 filters. However, we reduce its computational cost by
using 12 Gated ResNet blocks with 80 filters, keeping ev-
erything else constant. For more details, we refer the reader
to [2].

Autoregressive ordering: Autoregressive outpainting fol-
lows an image-specific order. We must use this custom or-
der because outpainting works best when one predicts ad-
jacent pixels in a sequence using as much known data as
possible. In some scenarios (e.g., extending a center crop),
this can be achieved with a fixed order. However, in our
case the particular points that must be outpainted depend on
the depthmap as seen in the first image and the new pose
from which it is projected.

Our order (Figure 4 of main paper) aims to go from
closest out, following a spiral pattern. We achieve this by
sorting the background/to-be-outpainted pixels in ascending
distance to the center of mass of the foreground/projected-
to pixels. We start with the closest pixel and add the closest
adjacent point not in the generation order. We repeat this
process until the entire image is ordering; ties due to pix-
els having equal distance are broken using a spiral pattern
outwards from the center of mass.

Refinement Module R: The Refinement Module takes in
a full 256 × 256 × 3 outpainted image and produces the
final, refined output of the same size 256 × 256 × 3. This
is trained adversarially and so it consists of a generator and
discriminator.

Generator: The generator follows BigGAN [1] and SynSin
[6] and consists of 8 ResNet blocks capped with a tanh. Fol-
lowing [1], there is an added downsampling block and with
noise injection into BatchNorm throughout. Specifically,
each ResNet block follows the following structure, consist-
ing of two paths which are added. The first path consists
of: a linear layer that injects noise followed by BatchNorm;

ReLU; convolution (size: 3×3 / stride 1 / padding 1); a lin-
ear layer to inject noise followed by BatchNorm; ReLU; and
convolution (size 3 × 3 / stride 1 / padding 1). The second
path consists as a convolution (size 1×1 / stride 1 / padding
0), which is added to the input. Whenever a ResNet block
downsamples, it uses average pooling to downsample the
input during residual connection; whenever it upsamples, it
uses bilinear upsampling.
Discriminator: The discriminator consists of 2 discrimina-
tor modules at different scales. Each discriminator contains
5 convolution blocks. Each block contains a convolution
(size 4× 4 / stride 2), followed by a Leaky ReLU (negative
slope 0.2). The middle three blocks additionally contain
an instance normalization layer between the conv and leaky
ReLU.

2. Implementation Details
Outpainting Inference. The Outpainter’s autoregressive
model produces its outputs by sampling. The forward pass
produces a probability distribution over the vector embed-
ded classes for every missing pixel in the 32 × 32 image.
We find that best results are obtained by generating a set
of full completions, followed by selection, and by adjusting
the sampling temperature used during inference to balance
detail and error.
Sample selection. For each image, we generate 50 com-
pletions and select the best. We use a combination of the
discriminator loss from R and a classifier entropy. The clas-
sifier is trained on MIT Places 365 [7]. Selection uses the
average of ranks obtained by: (1) ranking in descending or-
der of discriminator loss (since higher loss tends to corre-
spond to issues with details); (2) ranking in ascending order
of entropy (since sensible completions tend to be confident
predictions of the classifier).
Sampling Temperature. Sampling temperature is important
for balancing diversity and error. On Matterport, we use a
sampling temperature of 0.5, which we find reduces strange
completions but is still detailed. On RealEstate10K, we also
use 0.5 temperature for the 1-completion model. Again,
we see this temperature best balances realism with detailed
completions. On RealEstate10K’s 50-completion model,
we find we can increase sampling temperature to 0.7. While
this means more completions are not sensible, we can select
the best using an automated method. Therefore, the final
outputs are more detailed and are still realistic.

Generating Multiple Viewing Directions. To create
scenes as approximated in Figure 1 and seen in the supple-
mental video, support views are synthesized in eight direc-
tions: up, left, down, right, up-left, up-right, down-left, and
down-right. These directions are selected to give a sense of
all directions, and can be used to synthesize interior views
without additional outpainting thereafter. When using mul-



tiple support views, we accumulate in a similar manner to
the first support view: we lift existing information to 3D,
reproject into the new support view, and outpaint as needed.
In other words, we do not outpaint the same region again.

3. Experimental Setup

As detailed in the paper, we use two datasets to evalu-
ate. Matterport uses embodied agent navigation to select
paired views, while RealEstate10K selects paired frames
from real video clips. We therefore use different processes
to achieve a shared goal of selecting image pairs with large
angle change.

Matterport: Matterport selection is straightforward because
of embodiment. This consists of randomly drawing angle
change in an embodied agent with a maximum of 120◦ in
each direction. We use a dataset of 3.6k pairs.

RealEstate10K: On RealEstate10K, it is harder to select
large angle changes because we are instead selecting from
pairs of images in real videos. We select pairs of images
such that the pairs have at least 20 degrees angle change. In
order to attain such pairs, we allow sampling from anywhere
in video clips, which can be over 270 frames apart. To min-
imize the number of view changes so extreme that input and
target view are in different rooms, we limit translation at 1.0
meters, and angle at 60 degrees. We only consider pairs that
meet this criteria, rather than resampling. Our filtered test
set chooses 3600 pairs from over 3.5 million possible pairs
across over 2.4k video clips. All selected evaluation pairs
are cached for replicability.

4. Additional Results

We report additional results, including video predictions,
which provide the best simultaneous display of quality and
consistency.

Additional Qualitative Results: We first report additional
qualitative results. Video results give a thorough sense of
model quality and consistency, and are in the project web-
page. As stated in the paper, the proposed method tends to
produce high-quality, consistent scenes. In contrast, base-
lines such as SynSin - 6X are unable to create content, and
ablations such as No 3D Accumulation are wildly inconsis-
tent. Additional frame-level generated images are available
in Figures 1 and 2.

Additional Quantitative Results: We report more exten-
sive results for generated image quality. This is an expan-
sion on Table 2 in the paper. Although these automated
metrics are poor measures for extrapolation, we present in
more detail in Table 1 for completeness. Ground truth depth
is available in Matterport, meaning visible and non-visible
regions can be attained, similar to SynSin. The same is not

true of RealEstate10K, which contains real videos for which
extensive ground truth labeling is prohibitive.

We reiterate the caution from the paper that PSNR has
poor correlation with perceived quality when there are mul-
tiple possible completions (for instance during outpaint-
ing): Appearance Flow is competitive with other methods
on PSNR but loses to our proposed method 98% of the time
in A/B testing.

Limitations: Our primary limitation is outpainting both
consistent and detailed content, especially on large view
changes. There is a trade-off between the two, as a greater
diversity of samples is required for detail, but can result in
inaccurate content. While the approach of rejection sam-
pling can improve outpainting errors, they remain a chal-
lenge, particularly on Matterport. In fact, on Matterport
we reduce sampling temperature to minimize inconsistent
completions, which can result in less detail. For instance,
in Supp. Figure 2 row 3 column 1, notice missing content
tends to repeat visible content rather than ending visible ob-
jects and creating new ones.

Table 1: Full PSNR and Perc Sim: Traditional metrics such as
PSNR are poor measures for extrapolation tasks, but are reported
for reference.

Method Matterport RealEstate10K
PSNR ↑ Perc Sim ↓ PSNR ↑ Perc Sim ↓

Both InVis Vis

Tatarchenko et al. 13.72 13.59 15.24 3.82 10.63 3.98
Appearance Flow 13.16 13.11 14.75 3.68 11.95 3.95
Single-View MPI - - - - 12.73 3.45
SynSin 15.05 14.35 17.86 3.13 13.92 2.77
SynSin - Sequential 14.31 13.36 17.65 3.14 13.30 2.78
SynSin - 6X 15.52 14.94 17.98 3.16 14.17 2.78
SynSin - 6X, Sequential 15.61 15.07 17.92 3.17 14.21 2.73

Ours 14.60 13.58 18.08 3.17 13.10 2.88

5. Additional and A/B Testing Details

A/B testing is the primary measure for success through-
out experiments. This is common in work on extrapolation,
as automated metrics tend to struggle. We detail our A/B
testing framework below.

All A/B testing follows a standard A/B testing paradigm
where human workers are shown images and are asked
which is preferred given an input image. Workers were
given instructions and example images and labels. They
then had to pass a qualifier assessing whether they under-
stood the task. Workers were also monitored by gold stan-
dard sentinel labels. All annotations were gathered using
thehive.ai, a website similar to Amazon Mechanical Turk.
Tasks are detailed below, and we share worker instructions.

Evaluating Quality via A/B: For comparisons of quality,
we use novel view synthesis. A/B testing presents workers
with the input image reprojected into a new view, and asks



them to select the final image that makes more sense given
this image. The reason we use reprojections as worker input
instead of input images is it makes the A/B testing much
clearer for workers. Using an input and rotation are very
difficult to visualize, and thus difficult to compare across
models. We also do not compare to ground truth output, as
final images can vary drastically from ground truth and still
be highly reasonable.

Instructions are shared in Figure 3. Ties are not allowed;
final selection requires agreement of at least two workers.
Reprojections use the learned depth from our model, which
is effective on large view changes and therefore tend to be
accurate, compared to ground truth images.

Evaluating Consistency via A/B: For consistency A/B
testing, we use a similar novel view synthesis setup. How-
ever, instead of predicting one image, the model predicts
two images such that the second generated image is half the
rotation and translation of the first.

Workers are then asked to compare generated image
pairs across methods. We ask them to do so by showing
them a pair of images generated by two competing meth-
ods, pairs being stacked vertically. We do not use the input
or ground truth images as the goal is not to judge quality,
but only to judge consistency. Thus, even if one pair looks
less realistic, it should be selected. Full instructions are dis-
played in Figure 4.

Consistency can be difficult for workers to judge as it re-
quires attending to small regions of each pair of images that
may be slightly different. We therefore take several steps to
maximize worker success. We use fixed rotations of large
size (∼ 35◦ horizontal, ∼ 17.5◦ vertical) to ensure angle
change is apparent. We also constrain the rotation so that
it must be in the horizontal and vertical directions, as addi-
tionally using roll rotations can make transformations con-
fusing. Movement is also limited to that related to embod-
ied rotation, since movement opposing rotation can make
consistency difficult to evaluate. Finally, rotation is ran-
domly selected for each image from one of eight possible
directions seen in Figure 1: up, left, down, right, up-left,
up-right, down-left, and down-right. This allows us to ex-
plicitly specify rotation direction of each image pair to help
workers attend to specific regions of image pairs.

Evaluating Consistency via Homography: We validate
A/B consistency using PSNR and Perceptual Similarity via
homography. We use the same setup as in A/B testing, but
instead apply only pure rotations to images. This enables
homographies to warp across generated images. We do so
in each pair both from intermediate to extreme images and
from extreme to intermediate images. PSNR is then calcu-
lated on overlapping regions, while Perc Sim is calculated
on warped images with non-overlapping regions masked.
Scores are averaged across both directions in each pair.



Input Reproj. Ours Input Reproj. Ours

Figure 1: Additional Results on RealEstate10K.



Input Reproj. Ours Input Reproj. Ours

Figure 2: Additional Results on Matterport.



Figure 3: Quality A/B Worker Instructions.



Figure 4: Consistency A/B Worker Instructions.



References
[1] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale GAN training for high fidelity natural image synthesis.
In ICLR, 2019. 2

[2] Ajay Jain, Pieter Abbeel, and Deepak Pathak. Locally masked
convolution for autoregressive models. In Conference on Un-
certainty in Artificial Intelligence, pages 1358–1367. PMLR,
2020. 1, 2

[3] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor
Gordon, Wan-Yen Lo, Justin Johnson, and Georgia Gkioxari.
Accelerating 3d deep learning with pytorch3d. arXiv preprint
arXiv:2007.08501, 2020. 1

[4] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Gener-
ating diverse high-fidelity images with vq-vae-2. In NeurIPS,
pages 14866–14876, 2019. 1, 2

[5] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P.
Kingma. Pixelcnn++: A pixelcnn implementation with dis-
cretized logistic mixture likelihood and other modifications.
In ICLR, 2017. 1, 2

[6] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin
Johnson. Synsin: End-to-end view synthesis from a single
image. In CVPR, pages 7467–7477, 2020. 1, 2

[7] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and
Antonio Torralba. Places: A 10 million image database for
scene recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2017. 2


