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Abstract

Recent advancements in differentiable rendering and 3D
reasoning have driven exciting results in novel view syn-
thesis from a single image. Despite realistic results, meth-
ods are limited to relatively small view change. In order
to synthesize immersive scenes, models must also be able
to extrapolate. We present an approach that fuses 3D rea-
soning with autoregressive modeling to outpaint large view
changes in a 3D-consistent manner, enabling scene synthe-
sis. We demonstrate considerable improvement in single-
image large-angle view synthesis results compared to a va-
riety of methods and possible variants across simulated and
real datasets. In addition, we show increased 3D consis-
tency compared to alternative accumulation methods.

1. Introduction
Imagine that you walk into the office shown in Figure 1.

What will you see if you turn right? Is there a door onto
a patio? What if you step backward then look left? While
the image itself does not contain this information, you can
imagine a rich world behind the image due to your experi-
ence of other rooms. This task of single-image scene syn-
thesis promises to bring arbitrary photos to life, but requires
solving several key challenges. First, handling large view
changes involves extrapolation far beyond the input pixels.
Second, generating multiple outputs from the same input re-
quires consistency: turning left by 10◦ or 20◦ should reveal
progressively more of a single underlying world. Finally,
modeling view changes requires 3D-awareness to properly
capture perspective changes.

Prior methods for view synthesis fall short of these goals.
There has been great progress at interpolating between
many input views of a single scene [29, 28, 43, 44, 48, 50];
while these 3D-aware methods generate consistent out-
puts, they do not attempt to extrapolate beyond their in-
put views. Prior approaches to single-image view synthe-
sis [15, 47, 53] can extrapolate to small rotations and trans-
lations, but fail to model viewpoint changes at this scale.
For example, we show that naı̈vely retraining SynSin [53]
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Figure 1: Single-Image Scene Synthesis. Our framework fuses
the complementary strengths of 3D reasoning and autoregressive
modeling to create an immersive scene from a single image.

for larger angles leads to collapse.
In parallel, autoregressive models have shown impres-

sive results for image generation and completion [4, 30, 35,
40, 49]. These methods are very successful at extrapolating
far beyond the boundaries of an input image; however they
make no attempt to explicitly model a consistent 3D world
behind their generated images.

In this paper we present an approach for single-image
scene synthesis that addresses these challenges by fusing
the complementary strengths of 3D reasoning and autore-
gressive modeling. We achieve extrapolation using an au-
toregressive model to complete images when faced with
large view changes. Generating all output views indepen-
dently would give inconsistent outputs. Instead, we iden-
tify a support set at the extremes of views to be generated
(shown at the boundaries of Figure 1). Generated images
for the support set are then lifted to 3D and added to a con-
sistent scene representation. Intermediate views can then be
re-rendered from the scene representation instead of gener-
ated from scratch, ensuring consistency among all outputs.

Producing a system that can both do extreme view syn-



thesis and lift the results to 3D without requiring auxiliary
data poses a challenge. Our approach, described in Sec-
tion 3, builds upon insights from both the view synthesis
and autoregressive modeling communities. Each image and
new viewpoint yields a large and custom region to be filled
in, which we approach by adapting VQVAE2 [35] and ex-
panding Locally Masked Convolutions [18] to learn image-
specific orderings for outpainting. Once filled, we obtain
3D using techniques from SynSin [53]. This system can
outpaint large and diverse regions, accumulate outpainting
in 3D, and can be trained without any supervision beyond
images and 6DOF relative pose.

We evaluate our approach as well as a variety of al-
ternative methods and competing approaches on standard
datasets, Matterport 3D+Habitat [3, 41] and RealEstate10K
[63], using substantially larger angle changes (6× larger
than [53]). Throughout the experiments in Section 4, we
evaluate with the standard metrics of human judgments,
PSNR, Perceptual Similarity, and FID. Our experimental
results suggest that: (1) Our proposed approach produces
meaningfully better results compared to training existing
methods on our larger viewpoints. In particular, users select
our approach 73% of the time vs. the best variant of multi-
ple SynSin ablations. (2) Our approach of re-rendering sup-
port sets outperforms alternate iterative approaches, being
more consistent an average of 72% of images.

2. Related Work
Both novel view synthesis and image completion have

recently seen rapid progress. While novel view synthesis
work has approached large view change, it typically uses
multiple input images. Given only a single input image,
completion becomes highly relevant for outpainting.
Novel view synthesis. If multiple views are available as
input, 3D information can be inferred to synthesize new
viewpoints. Classical methods often use multi-view geom-
etry [6, 9, 11, 22, 42, 65]. Deep networks use a learned
approach, and have shown impressive results with fewer
input views and less additional information. They rep-
resent 3D in a variety of ways including depth images
[1, 28, 37, 56], multi-plane images [47, 63], point clouds
[53], voxels [25, 44], meshes [15, 20, 26], multi-layer
meshes [13, 43], and radiance fields [29, 50, 60]. We use
a point cloud representation.

Given only a single input image, CNNs have also
achieved success [8, 23, 48, 57], owing largely to progress
in generative modeling [2, 5, 17, 19, 21, 32, 51, 59]. Never-
theless, single-image work has been limited to small angle
change [45, 47, 64]. Methods such as SynSin [53] treat out-
painting the same as inpainting, which struggles beyond a
margin. Our goal is to synthesize a scene from an image,
which requires large outpainting. We thus outpaint explic-
itly using a completion-based approach.

Concurrent work approaches similar, though distinct,
problems. Liu et al. [23] move forward on camera tra-
jectories through nature scenes. In contrast, our focus is
on indoor scenes and we handle outpainting. We show in
this setting, a completion-based approach produces better
results than a similar approach to [23]. Hu and Pathak [15]
use a mesh representation which undertakes twice the rota-
tion of SynSin, but still treats outpainting as interpolation.
In contrast, our completion-based approach outpaints ex-
plicitly, which we show beats inpainting-based methods in
large angles. Rombach et al. [38] approach large angle
change on images, but do not learn a 3D representation. On
scenes, we show our approach of accumulating 3D informa-
tion across views is critical for consistency.

Image Completion and Outpainting. Recent work in in-
painting takes an adversarial approach [16, 24, 54, 58],
and has been used in novel view synthesis refinement
[23, 44, 47, 53]. However, inpainting is not suitable for
synthesizing large angle change, which yields large miss-
ing regions. Methods targeting outpainting [46, 52, 55] im-
prove extrapolation, but are not flexible to arbitrary missing
regions that may occur in view synthesis.

Our work adopts techniques from the literature on deep
autoregressive models. These works use masking with
RNNs [30], CNNs [27, 30, 36, 40, 49], and Transform-
ers [4] to predict individual pixels sequentially. While se-
quential generation is slower than feed-forward methods, it
enables flexible ordering and state-of-the-art performance
[4, 7, 27, 31, 35]. Yet, autoregressive methods by them-
selves do not enable 3D consistent outpainting. Thus, we
build upon this literature in conjunction with 3D view syn-
thesis to produce a set of 3D consistent views. Making this
3D fusion work requires building upon several recent de-
velopments: we adapt the masked convolution approach of
Jain et al. [18] to handle custom, per-image, regions to out-
paint; also, like VQVAE2 [35] and Dall-E [33], we find that
selecting from a set of completions aids realism.

3. Approach
Our goal is to input a single image and synthesize a con-

sistent set of images showing the surrounding scene. This
requires generating high-quality images even under large
transformations, and ensuring 3D consistency in the results.
We propose an approach to this task which uses deep autore-
gressive modeling to facilitate high-quality extrapolations
in conjunction with 3D modeling to ensure consistency.

The two critical insights of the method are the order in
which image data is produced and the 3D nature of the ap-
proach. As illustrated in Figure 2, our system generates data
on extremal support views first and operates on point clouds.
We outpaint these support views with an autoregressive out-
painting module that handles most of the generation. As we
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Figure 2: Consistent Scene Synthesis. The model first gener-
ates extremal support views, from which intermediate views can
be generated. This allows the model to outpaint once and re-render
many times, which improves 3D consistency.

reproject intermediate views, we touch up the results with
a refinement module. Throughout, we translate from im-
ages to point clouds with a self-supervised depth module
and back with a differentiable renderer.

3.1. 3D and Synthesis Modules

We begin by introducing each of the modules used by
our system, which are pictured on the right of Figure 3. We
first describe the two modules that map to and from point
clouds, followed by the models that generate and refine pix-
els. With the exception of the projection module, all are
learnable functions that are represented by deep neural net-
works. Full descriptions of each are in the supplement.

Depth Module D: Given an image I , we can convert it into
a colored point cloud C = D(I) using a learned depth pre-
diction system. Specifically, the per-pixel depth is inferred
using a U-Net [39] and the pixel is mapped to 3D using
known intrinsics. In our work, we learn D via end-to-end
training on reprojection losses.

Projector π: Given a colored point cloud C, and 6DOF
pose p, we can project it to an image I = π(C,p) using
Pytorch3D [34]’s differentiable renderer. This renderer uses
a soft z-buffer which blends nearby points.

Outpainter O: When the viewpoint changes dramatically,
large missing regions come into the field of view and must
be outpainted. The specific regions depend on both the
viewpoint shift and the image content. We perform per-
image outpainting on the latent space of a VQ-VAE [31, 35].
Our particular model autoencodes 256 × 256 × 3 inputs
through a discrete 32×32×1-dimensional embedding space
{Z}, Zi,j,1 ∈ Z512

1 . Using discrete values encourages the
model to choose more divergent completions.

We outpaint in this 32 × 32 latent space using an au-
toregressive model [31, 33, 10]. In our particular case we
predict pixel embeddings with a PixelCNN++ [40] architec-
ture, using a 512-way classification head to predict a distri-

bution over embeddings. We use Locally Masked Convolu-
tion [18] blocks to implement image-specific custom-pixel
orderings. We show examples of the orders used in Figure
4, which outpaint pixels close to the visible region, followed
by those farther away.

Refinement Module R: Outpainting returns images that
are sensible, but often lack details or have inconsistencies
due to imperfect depth. We therefore use an adversarially-
trained refinement module to correct local errors. This mod-
ule blends the reprojection of the original and outpainted
pixels and predicts a residual to its input. Our generator ar-
chitecture is similar to [53] and uses 8 ResNet [12] blocks
containing Batch Normalization injected with noise like [2].
We adopt the discriminator from [51].

3.2. Inference

At inference time, we compose the modules to generate
the full set of images in two phases: support view outpaint-
ing, followed by intermediate view rendering. The process
overview is shown on the left of Figure 3, and can be reused
to synthesize multiple viewing directions.

Support View Outpainting and Refinement: Given a sin-
gle input image and support view p1, our goal is to cre-
ate an updated point cloud that includes a set of pixels that
might be seen in view p1. We achieve this by outpaint-
ing in the support view: first, we estimate what can be
seen in the support view by projecting the point cloud in-
ferred from the input, or I ′ = π(D(I),p1). This projection
usually has a large and image-specific gap (Figure 4). Our
second step composes the outpainting and refinement mod-
ule, or I1 = R(O(I ′)). Finally, the resulting large-view
synthesis itself is lifted to a point cloud by applying D, or
C1 = D(I1).

Intermediate View Rendering and Refinement: Once the
input and outpainted support views have converted to point
clouds, we can quickly render any intermediate view pi by
applying the projection and refinement modules. Specifi-
cally, if C = D(I) is the input point cloud and C1 is the
support view point cloud, we simply apply the refinement
to their combined projection, or R(π([C,C1],pi)).

3.3. Training and Implementation Details

End-to-end training of the model is difficult because the
Outpainter requires ground truth input and output, which
breaks gradient flow. We therefore perform training of
the Depth and Refinement Modules, the Outpainter VQ-
VAE, and Outpainter autoregressive model separately. In
all cases, batch size is chosen to maximize GPU space, and
training stops when validation loss plateaus.

We first train the latent VQ-VAE space of the Outpainter
O, which is then frozen and used by the other modules dur-
ing training. Training takes ∼ 30k iterations with batch size
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Figure 3: Approach Overview. At inference, the model first outpaints an extremal support view, then renders intermediate views (left).
Both steps rely on the Depth Module to lift images to point clouds, the Projector to render in a novel view, and the Refinement Module to
smooth outputs (right). The Outpainter fills in missing information in the target view during outpainting.
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Figure 4: Autoregressive Outpainting. We outpaint using
image-specific orderings, which begin with pixels adjacent to the
visible region and move outward. Our model outpaints a vector-
quantized embedding space.

of 120 and uses the losses from [35]: an L2 reprojection loss
and an embedding commitment loss.

Next, we train the Depth and Refinement Modules
jointly. Ground truth is used in place of missing pixels to be
outpainted to avoid having to sample from the Outpainter
during training. The composition of Depth and Refinement
is trained with an L1 pixel loss, a content loss [61], and
a multi-scale discriminator loss [51]. The discriminator in
the Refinement Module is trained at multiple scales with a
feature-matching loss. In the process, the Depth Module is
implicitly learned. We train for 125k iterations (200k on
Matterport) with batch size 12.

Finally, the autoregressive model in O is trained. It is
trained upon the learned VQ-VAE latent space using cus-
tom outpainting orderings. Orders move outward from re-
projections (Figure 4); reprojections are a function of depths

predicted by the Depth Module. Training takes ∼ 75k iter-
ations using a batch size of 60 and cross-entropy loss.
Curriculum Learning. The Depth and Refinement Mod-
ules are trained via a curriculum. They first learn to synthe-
size small view changes, then generalize to larger angles.
For the first 25k iterations, we train at the same rotation as
[53]. For Matterport, this is 20◦ in each Euclidean direc-
tion, for RealEstate10K it is 5◦ total. Next, we increase
maximum rotation by this amount, and repeat this increase
every 25k iterations until reaching our target rotation.
Outpainting Inference Details: Outpainting produces di-
verse completions, which is a dual-edged sword: some are
good, but many will be inconsistent with the input. We
thus produce multiple samples and select the best. Selec-
tion uses the complementary signals of classifier entropy
and discriminator losses – samples that are consistent with
inputs usually have less entropy over model classes (we use
a Places [62] classifier), and detailed images usually have
higher discriminator loss. Full details are in supplement.
Computational Reduction. We perform aggressive yet
efficient pruning to the aggregate model, which becomes
heavy otherwise. The Outpainter is most critical to speed.
We reduce the depth of the autoregressive model by 60%
and reduce width by 50%, and use 32 × 32 completions
compared to VQVAE2’s of both 32× 32 and 64× 64 com-
pletions. We find that detail from 64 × 64 completions can
instead be generated by pairing a 32× 32 completions with
the refinement module.

In total, our changes improve our inference speed by
10× for 50 completions (500× for one completion), com-
pared to using a full VQVAE2 and PixelCNN++ setup. One
completion takes ≈ 1 minute using 50 samples, or 1 second
with 1 sample. Training takes ≈ 5 days on 4 2080 Ti GPUs.
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Figure 5: Consistent, High Quality Scenes. Given a single image, the proposed method generates images across large viewpoint changes.
It both continues content (e.g. wall, bottom right) and invents consistent content (e.g. door, top left). Results shown on RealEstate10K.

4. Experiments
The goal of our experiments is to identify how well our

proposed method can synthesize new scenes from a single
image. We do this on standard datasets and compare with
the state of the art (Sec. 4.1). Our task requires not only
creating plausible new content, but also ensuring the cre-
ated content is 3D consistent. We evaluate these two goals
separately. We test the generated views for quality by in-
dependently evaluating each generated view (Sec. 4.2); we
measure consistency by evaluating consistency across a set
of overlapping views (Sec. 4.3).

4.1. Experimental setup

We evaluate throughout on standard datasets, using stan-
dard metrics. We compare our approach with baselines
from the state of the art, as well as ablations that test al-
ternate scene generation or view synthesis strategies.

Datasets. Following [53], we evaluate on Matterport3D
[3] and RealEstate10K [63]. These enable the generation
of pairs of views for training and evaluation. For consis-
tency with past work, we follow a similar selection setup
as [53], except we increase rotations; making correspond-
ing changes in sampling to do so. Full details appear in the
supplement.

Matterport: Image selection is done by an embodied agent
doing randomized navigation in Habitat [41]. We increase
the limits of [53] angle selection from 20◦ in each direction
to 120◦.

RealEstate10K: RealEstate10K is a collection of videos and
image collection consists of selecting frames from a clip.
SynSin selects pairs with angle changes of ≥ 5◦ with maxi-
mum frame difference of 30. Increasing the angle change is
not straightforward since ≥ 30◦ changes are infrequent and
can correspond to far away frames from different rooms.

We therefore select pairs of between 20◦ and 60◦ apart and
≤ 1m away. The average angle is ≈ 30◦, roughly 8× larger
than SynSin. SynSin average angle is less than 5◦ because
it sometimes re-samples; see [53] for details.

Evaluation Metrics. We evaluate content quality and con-
sistency using human judgments as well as a set of auto-
mated metrics.

Human A/B Judgments: We evaluate image quality by ask-
ing annotators to compare generated images and consis-
tency by asking annotators to compare image pairs. In both
cases, we ask humans to make pairwise comparisons and
report average preference rate compared to the proposed
method: a method is worse than the proposed method if it
is below 50%. Automatic evaluation of synthesis is known
to be difficult, and we find that human judgments correlate
with our own judgments more than automated systems.

Fréchet Inception Distance (FID) [14]: We evaluate how
well generation images match on a distribution level using
FID, which measures similarity by comparing distributions
of activations from an Inception network. It has been shown
to correlate well with human judgments [14], and we find it
is the best automated measure of image quality.

PSNR and Perceptual Similarity [61]: PSNR and Perc Sim
are standard metrics for comparing images. They are ex-
cellent measures of consistency, which is a unimodal task.
Prior work [46, 52, 54] suggests that they are poor mea-
sures for conditional image generation since there are many
modes of the output. We report them only for consistency
with past work.

Baselines. We compare with existing work in the space of
synthesizing unseen parts of rooms, as well as ablations that
test components of our system (which are introduced when
used). Our primary point of comparison is SynSin [53]
since it is state of the art, although we evaluate other stan-
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Figure 6: View Synthesis Ablations. Prior work is not capable of synthesizing large angle change, even with additional training and
sequential generation. This typically leads to collapse. Explicit outpainting instead creates realistic and consistent content.

dard baselines [45, 47, 64]. In addition to standard SynSin,
we evaluate many approaches to extending SynSin to han-
dle the large rotations in our dataset.

SynSin [53]: One primary baseline is SynSin as described
in [53] with no adaptation for extreme view change. We
also evaluate the following extensions: (SynSin - Sequen-
tial) an autoregressive SynSin that breaks the transforma-
tion into 6 smaller transforms, accumulating 3D informa-
tion; (SynSin - 6X) a SynSin model trained on larger view
change; (SynSin - 6X, Sequential) a SynSin model trained
on larger view changes and evaluated sequentially.

Other Baselines: We compare with a number of other view
synthesis approaches, which tests whether any difficulties
are specific to SynSin. In particular, we use: Appearance
Flow [64]; Tatarchenko et al. (Multi-View 3D from Sin-
gle Image) [45]; and Single-View MPI [47], which is only
available on RealEstate10K.

4.2. Evaluating Quality

We begin by measuring the generated image quality. Be-
ing able to synthesize realistic images well beyond inputs is
critical to generate an immersive scene.

Qualitative Results. Figure 5 shows that the proposed
method can produce high-quality, 3D-consistent images
across large angle changes. The images suggest the method
is capable of continuing visible scene information realisti-
cally, including an entirely new door that is consistent with
the original image content on top left and the continuation
of the textured wall on bottom right.

Comparisons with prior work in Figure 6 show that the
baselines struggle with large angle changes. Straightfor-
ward solutions like sequential generation or training on
large angle changes do not succeed. While SynSin - 6X
generates some results, it mainly repeats visible pixels. Our
approach can extend visible information where appropriate,
but also creates new objects like desks, windows, and tables.

Table 1: Image Quality as measured by A/B testing (preference
frequency for a method compared to ours) as well as FID. In A/B
tests, workers select the synthesized image better matching image
reprojections choosing from the alternate method and ours. All
baselines are preferred less often than our approach, and our ap-
proach better matches the true distribution as measured by FID.
Single-View MPI [47] is not available on Matterport.

Method Matterport RealEstate
A/B ↑ FID ↓ A/B ↑ FID ↓

Tatarchenko et al. [45] 0.0% 427.0 0.0% 256.6
Appearance Flow [64] 19.8% 95.8 1.9% 248.3
Single-View MPI [47] - - 2.7% 74.8
SynSin [53] 14.8% 72.0 5.8% 34.7
SynSin - Sequential 19.5% 77.8 11.5% 34.9
SynSin - 6X 27.3% 70.4 22.0% 27.9
SynSin - 6X, Sequential 21.2% 79.3 14.4% 33.1

Ours - 56.4 - 25.5

Quantitative Results. Quantitative results in Table 1
are largely consistent with qualitative results from Fig-
ures 6. On Matterport, our explicit outpainting does sub-
stantially better across metrics compared to baselines in-
cluding SynSin. Alternative baselines to SynSin perform
worse, showing this is not a failing specific to SynSin.
Training on larger rotation and applying sequential genera-
tion to SynSin help, but do not close the gap to our method.

On RealEstate10K, the gap is even larger for human
judgment. Interestingly, SynSin - 6X does well on FID on
RealEstate10K despite often producing repeated and mean
colors. This is in part because RealEstate10K contains a
high frequency of images looking through doorways. In
these cases, the target view often includes the wall next to
the doorway, which typically consists of bland and repeated
colors. Thus, repeated colors become reasonable at a distri-
bution level, even if the difference is clear to humans.

To follow past work, we report PSNR and Perceptual



Table 2: Traditional metrics such as PSNR are poor measures for
extrapolation tasks [46, 52, 54], but are reported for reference.

Method Matterport RealEstate10K
PSNR ↑ Perc Sim ↓ PSNR ↑ Perc Sim ↓

Tatarchenko et al. [45] 13.72 3.82 10.63 3.98
Appearance Flow [64] 13.16 3.68 11.95 3.95
Single-View MPI [47] - - 12.73 3.45
SynSin - 6X, Sequential 15.61 3.17 14.21 2.73

Ours 14.60 3.17 13.10 2.88
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Figure 7: Consistency Ablations. The proposed method gener-
ates a consistent scene across views. Without 3D accumulation,
outpainted regions are completely inconsistent. Sequential out-
painting yields artifacts, due to using autoregressive completions
in multiple views.

Similarity metrics in Table 2 for best performing methods
(see supplement for all). These automated metrics, es-
pecially PSNR, are poor measures for extrapolation tasks
[46, 52, 54], so A/B testing is the primary measure of suc-
cess. The results of Appearance Flow in Figure 6 is ev-
idence of this phenomenon. This method often produces
entirely gray images in RealEstate10K, and loses to our
method 98.1% of the time in A/B testing. Yet, its PSNR
is competitive with other methods.

4.3. Evaluating Consistency

Having evaluated the quality of individual images, we
next evaluate consistency. We note that consistency only
matters if results are of high quality – producing a con-
stant value is consistent. We therefore focus only on
our approach and alternate accumulation strategies for our
method. We evaluate consistency between a pair of gen-
erated results, one extreme view and an intermediate view.
The setup follows view synthesis, with two exceptions: we

Table 3: Scene Consistency. A/B comparison of consistency.
Workers select the most consistent pair of overlapping synthesized
images (e.g. right two full images in Figure 7). All scores below
50 indicate the proposed method beats all ablations, on average.
Consistency is lowest without 3D accumulation. Sequential order
generation is less consistent than ours due to repeated outpainting.

A/B vs. Ours ↑
Method Matterport RealEstate10K

No 3D Accumulation 22.6% 7.5%
Sequential Generation 44.0% 36.2%

Ours - -

pick a large view change (∼ 35◦ horizontal, ∼ 17.5◦ verti-
cal) to ensure enough change to check consistency, and we
use only horizontal and vertical rotation since camera roll
makes judging consistency difficult. Full details are in sup-
plement.

Alternate Strategies For Scene Synthesis. Throughout,
we use our base model but compare with alternate strategies
for scene synthesis. Specifically, we try:

Ours - No 3D Accumulation: We apply the method without
accumulating the point cloud across generated images. This
means outpainting takes place for each synthesized view,
and outpainting is independent across views.

Ours - Sequential Generation: We apply the proposed 3D
accumulation using the reverse order: this outpaints the
missing region for the nearest image, then repeats outward.
This results in outpainting in each new view, compared to
our method which outpaints only one extremal view.

Qualitative Results. We show two outputs for an image
in Figure 7. Without accumulation, one gets two wildly
different results for each of the views (top row). Adding the
accumulation helps resolve this, but doing it sequentially
in two stages (middle row) produces visible artifacts. By
generating a single large change first, our approach (bottom
row) produces more consistent results.

Quantitative Results. A/B testing shown in Table 3 sup-
ports the qualitative findings: On RealEstate10K, indepen-
dent generation is chosen only 7.5% of the time. Sequential
generation accumulates a 3D representation, and performs
better than the naı̈ve method, but is less consistent than the
proposed method.

We quantitatively validate these results using PSNR and
Perceptual Similarity in a controlled setting. We use the
same setup, but apply pure rotations to images, which
means the resulting images are related by a homography.
We apply this on RealEstate10K and use homographies to
warp extreme to intermediate views and to warp intermedi-
ate to extreme views. We then calculate consistency using
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Figure 8: Improving Sample Selection. Selection is crucial since
the Outpainter creates a diversity of completions. Using classi-
fier entropy yields completions consistent with inputs, while the
trained discriminator provides more detail. Combined selection
produces both consistent and detailed generations.

PSNR on overlapping regions and Perc Sim on warped im-
ages with non-overlapping regions masked. Without 3D ac-
cumulation does poorly, with Perc Sim/PSNR 0.606/13.6;
sequential generation with 3D accumulation improves re-
sults tremendously to 0.456/17.9. The full method improves
further to 0.419/18.6.

4.4. Ablations

Finally, we report some ablations of the method. These
test the contribution of our latent space, the use of multiple
samples, and the mechanism used to select the samples.

Ablations. We compare the proposed Outpainting Module
and Sampling to alternatives.
Ours - RGB Autoregressive: We compare with using a RGB
space to test the value of our latent space. Similar to prior
work [40], we only consider a single completion for RGB.
As opposed to VQ-VAE-based models, multiple comple-
tions is less helpful empirically.
Ours - 1 Completion: We evaluate effectiveness of our
method with just one completion, which is more efficient
but often less effective.
Ours - Classifier Selection: We apply our proposed method
without using a discriminator for selection.
Ours - Discriminator Selection: We apply our proposed
method without classifier included for selection.

Qualitative Results. An autoregressive approach alone
does not fully explain our success. As we examine in Fig-
ure 8, the variety of autoregressive completions means sam-
ple selection is critical. While classifier entropy [35] se-
lects sensible completions, they tend to lack detailed tex-
ture (left). In contrast, a discriminator selects completions
with realistic textures, but they may not make sense with
the entire scene (middle). We find the selection methods are
complimentary. Combined they select sensible completions
with realistic detail (right).

Quantitative Results. Table 4 confirms the qualitative re-
sults. On RealEstate10K, the baseline classifier and trained
discriminator perform about as good or better than a single

Table 4: Synthesis Ablations. Comparison of autoregressive
model and selection criteria. Our method beats all ablations
on RealEstate10K. On Matterport, the same selection trends are
true. However, Matterport’s scanned environments exhibit homo-
geneous lighting, so a single completion is sufficient to maximize
autoregressive performance.

Method Matterport RealEstate10K
A/B vs. FID ↓ A/B vs. FID ↓
Ours ↑ Ours ↑

RGB Autoregressive 41.3% 60.73 29.6% 31.90
1 Completion 52.3% 55.46 38.4% 28.04
Classifier Selection 47.7% 59.78 44.9% 28.71
Discriminator Selection 47.9% 56.49 47.7% 26.30

Ours - 56.36 - 25.53
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Figure 9: Two Input Synthesis. The proposed method can read-
ily generalize to two input images due to building on point clouds.

completion. Again, combining the discriminator and clas-
sifier yields the best selections. Combining is also helpful
on Matterport. However, its scanned environments tend to
result in more homogeneous lighting, in comparison with
the reflection effects of light in real images. As a result,
a single completion is typically sufficient to maximize au-
toregressive performance. Finally, in the table, we confirm
outpainting in a VQ-VAE space is superior to using RGB.

5. Discussion

We see synthesizing a rich, full world from a single im-
age as a steep new challenge. Requiring only a single input
opens up new experiences, but even with a single image, we
see 3D awareness as important for good results and gener-
ality. For instance, our model’s 3D awareness enables the
application of our system to two views as shown in Figure 9
by ingesting two point clouds.
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