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Abstract

Estimating relative camera poses between images has
been a central problem in computer vision. Methods that
find correspondences and solve for the fundamental ma-
trix offer high precision in most cases. Conversely, meth-
ods predicting pose directly using neural networks are more
robust to limited overlap and can infer absolute transla-
tion scale, but at the expense of reduced precision. We
show how to combine the best of both methods; our ap-
proach yields results that are both precise and robust, while
also accurately inferring translation scales. At the heart
of our model lies a Transformer that (1) learns to balance
between solved and learned pose estimations, and (2) pro-
vides a prior to guide a solver. A comprehensive analy-
sis supports our design choices and demonstrates that our
method adapts flexibly to various feature extractors and
correspondence estimators, showing state-of-the-art per-
formance in 6DoF pose estimation on Matterport3D, Inte-
riorNet, StreetLearn, and Map-free Relocalization. Project
page: https://crockwell.github.io/far/

1. Introduction

Relative camera pose estimation is a fundamental problem
in computer vision [24], with applications in augmented re-
ality [29, 37, 42], robotics [50, 67, 81], and autonomous
driving [9, 23]. One recent line of work learns to estimate
correspondences then solve for pose [19, 43, 51, 65, 70],
often offering sub-degree errors. Unfortunately, this frame-
work tends to struggle when faced with large view change
(Figure 1, left), and additionally cannot recover scale be-
cause it produces the Fundamental or Essential matrix. An-
other line of work learns to estimate pose directly [5, 10, 41,
62, 75], which is not as precise, but can be more robust and
produces translation scale (Figure 1, left and right).

The proposed method builds upon both communities to
produce a general method that is no worse than either of the
options and often better than both. Critically, it leverages
learned correspondence predictions as input, and combines
learned pose estimation with a solver to estimate 6DoF
pose. For this task, we purposefully select the Transformer,
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Figure 1. Precise and Robust 6DoF Pose Estimation. Cor-
respondence Estimation + Solver methods (here LoFTR [70],
RANSAC [22]) produce precise outputs for moderate rotations,
but are not robust to large rotations (left), and cannot produce
translation scale. Learning-based methods (here LoFTR with 8-
Point ViT [62] head) produce scale (right) and are more robust,
but lack precision (left). FAR leverages both for precise and ro-
bust prediction, including scale.

which can handle dense features or correspondences as in-
put. Put succinctly, the method is Flexible: agnostic to cor-
respondence and feature backbone; Accurate: matches the
precision of correspondence-based methods; and Robust:
builds upon the resilience of learned pose methods.

FAR enables learning-based and solver-based methods
to improve each other. Learned predictions are more ro-
bust than solver output, and are therefore used as a prior to
bias the solver. Improved solver output, which tends to be
more precise than learned output when it succeeds, is then
combined with Transformer predictions to form final out-
put. Predictions are combined via a weighting predicted by
the Transformer, meaning the Transformer can learn to rely
more upon either method depending on their effectiveness.

Figure 2 analyzes FAR in practice, measuring error as
a function of the number of good input correspondences.
With many correspondences, the solver is highly accurate,
leaving little room for improvement from the prior. As the
number of correspondences drop, solver performance de-
grades, but this can be alleviated meaningfully using the
learned prior. The learned weighting also contributes to
robustness, and is plotted on the right: the Transformer
primarily uses solver output if there are many correspon-
dences, and more heavily uses the regressor when there
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are few correspondences (Figure 2, right). The result is a
method that does not sacrifice in the case of many corre-
spondences, but has a large gain given few correspondences.

Experiments analyze FAR in detail across a number of
scenarios and datasets. First, we analyze theoretical ro-
bustness, beginning from ground truth correspondences and
procedurally adding (1) noise and (2) outliers. We next
evaluate the proposed method on four challenging datasets,
spanning both indoors: Matterport3D and InteriorNet, and
outdoors: StreetLearn and Map-free Relocalization. Across
settings, the proposed method typically outperforms, or oc-
casionally matches, the state of the art. We additionally an-
alyze the components of FAR in ablations, and apply it to a
variety of permutations of correspondence and feature esti-
mation backbones. We also study the impact of dataset size
upon model behavior.

2. Related Work

Learned Camera Pose Estimation. Learned Camera Pose
Estimation has recently made impressive progress. If many
views are available, camera pose can be precisely refined
during SLAM [15, 72] or Visual Odometry [36, 73, 76]. If
fewer views of a scene are available, methods have become
increasingly robust to e.g. large rotation [29, 68, 82].

This paper focuses on the wide-baseline two-view set-
ting, which has also strongly progresses [10, 14, 20, 79, 80].
Some of these methods also perform 3D reconstruction [1,
30, 55, 71]. We build off the 8-Point ViT [62], a SOTA
method for two-image 6DoF camera pose estimation.
Correspondence Estimation. Correspondence can be
learned [13, 18, 19, 28, 35, 51] or attained using classi-
cal methods [6, 45, 64], including specialized for wide-
baseline stereo [47, 49, 54]. We use recent SOTA methods
LoFTR [70] and SuperPoint+SuperGlue [16, 65], but note
FAR can readily adapt to alternative estimators.
Camera Pose Estimation from Correspondences. Cam-
era pose estimation from correspondences is a long stand-
ing [22] and still active problem [3]. Typically, algorithms
use a robust estimator [3, 4, 22] along with the 7-Point [38]
or 8-Point [26] algorithm to find the fundamental matrix, if
intrinsics are unknown, or 5-Point algorithm [52] to find the
essential matrix, if intrinsics are known. F or E can than be
decomposed into RT (without translation scale) and estimat-
ing direction via triangulation and the chirality check. We
assume known intrinsics and use RANSAC with the 5-Point
algorithm, but our contributions are orthogonal to estimator.

Recent work incorporates learnable elements into pose
estimation from correspondence [57]. Barroso et al. [5]
learn to select from candidate essential matrices. Roessle
and Nießner [63] use a differentiable 8-Point algorithm,
while Wei et al. [77, 83] use a differentiable robust esti-
mator, to improve F via end-to-end training. DSAC [7]
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Figure 2. Combining Classical and Learned. Left: Solver output
is precise given many inliers, but is poor when few are available;
Updated solver output via FAR’s prior improves robustness signif-
icantly. FAR’s Transformer is less precise but more robust. The
full model fuses prior-guided Solver output and Transformer out-
put for the best of both, giving more weight to the solver when
many inliers are available (right).

supervises a Scoring CNN to predict consensus and guide
RANSAC. FAR is distinct from these works as its final out-
put is a weighted combination of Solver Pose and Learned
Pose. This important difference allows FAR to predict scale
and improve robustness to poor or limited correspondences
(Figure 2). GRelPose [33] predicts pose from correspon-
dences, but does not use a solver, limiting precision.

3. Approach

Our goal is to predict relative camera pose, including trans-
lation scale, from two overlapping images. This 6DoF
pose can be parameterized as T ∈ SE(3), consisting of
R ∈ SO(3) and t ∈ R3. We specifically focus on pre-
dicting translation scale, which cannot be solved for from
correspondences alone, in order to enable real world appli-
cations e.g. 3D reconstruction and neural rendering. The
two-view case facilitates these applications on e.g. image
collections. We assume known camera intrinsics as they are
generally available from modern devices [2].

FAR fuses complimentary strengths from the two lines
of pose estimation work: learned correspondence estima-
tion followed by a robust solver, and end-to-end pose esti-
mation. Critically, it produces results that are no worse than
either and often better than both. We design the method
as flexible to be plugged-in to existing methods with min-
imal change, showing improved results in a variety of set-
tings and datasets. We outline FAR in Section 3.1, detail the
learned network in Section 3.2 and how we apply a prior to
the solver in Section 3.3.

3.1. Approach Outline

Figure 3 shows an overview of the proposed approach. At
the heart of the approach is the Pose Transformer (Sec 3.2)
which takes in dense features and outputs (1) an estimate of
6DoF pose Tt and (2) a relative weight w of this prediction.
Tt is then combined with solver-estimated pose Ts using
weight w to obtain pose estimate T1. T1 is used as a prior
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Figure 3. Overview. Given dense features and correspondences, FAR’s Transformer produces camera poses (in square boxes ) through
a transformer (round box ) and classical solver (round box ). In the first round, the solver produces a pose Ts. FAR’s pose transformer
averages this with its own prediction Tt via weight w, to yield the round 1 pose T1. T1 pose serves as a prior for the classic solver,
which produces an updated pose Tu. This is combined with an additional estimate of Tt and weight w to produce the final result T.
With few correspondences, T1 helps solver output, while the network learns to weigh Transformer predictions more heavily; with many
correspondences, solver output is often good, so the network relies mostly on solver output.

for the solver, resulting in updated solver output Tu, which
is combined with Tt via w to get the final output T.

This architecture enables the network to learn to behave
differently depending on the data regime. In the case of
many, high-quality correspondences, classical solvers are
typically precise, so the prior has little impact on the solver,
while the network learns to heavily rely upon solver output
via a low w. In the case of few, low-quality correspon-
dences, solvers degrade, so the prior is designed to have a
strong influence on solver output, while the network relies
more heavily on the transformer predictions (high w).

The approach is agnostic to input features and correspon-
dences. In experiments (Sec 4), we show success with fea-
tures from three feature estimation methods [2, 62, 70] and
correspondences from two correspondence estimators [65,
70]. We use a ViT [17] to handle spatial features, and losses
can backpropagate through the backbone. We also explore
using only correspondences and descriptors as input.

3.2. Pose Transformer

The goal of the Transformer is to estimate (1) 6DoF rel-
ative camera pose Tt between two wide-baseline images
and (2) weight w ∈ [0, 1] of its estimate vs. solver es-
timates from a set of 2D correspondence matches M =
{(p,q)} | p,q ∈ R2 and optionally dense 2D image-wise
features fi, fj . Given predicted camera pose and weight,
the final output is the linear combination of Transformer
pose Tt and solver pose Ts weighted by w. We use sep-
arate weights for translation wt and rotation wr, allowing
the Transformer to have different confidences for two sub-
tly different problems.

Two challenges to this setup are that linear combinations
of rotations are often not rotation matrices, and solver trans-
lation does not have scale. To address the former, we repre-
sent pose in the 6D coordinate system of Zhou et al. [84],
which enables us to combine in 6D space before computing

a rotation matrix using Gram–Schmidt orthogonalization.
To address scale-less solver output, we scale translation ts
by the Transformer predicted translation magnitude ||tt||,
before linearly combining. We find this stabilizes training
compared to first averaging predicted the angles of ts and
ttf and then applying scale to normalized predictions. Our
final formula is:

R̂ = wrRt + (1− wr)Rs

t̂ = wttt + (1− wt)||tt||ts
(1)

Transformer Backbone. We use two distinct architectures
to span possible inputs: if features are available, we use
a modified ViT. If only correspondences are available, we
use a Vanilla Transformer. This means the method can be
used with correspondence or regression-based methods pro-
ducing dense features, while accommodating methods only
outputting correspondence. In each case, the Transformer
produces features fo used as input to two MLP heads.
8-Point ViT. This network takes as input pairwise dense
features fi, fj and produces a feature vector fo. It con-
sists first of one LoFTR [70] self-attention and cross-
attention layer followed by an 8-Point ViT cross-attention
layer [17, 46, 62]; both networks are aimed at producing
good features for pose estimation. For detailed architectures
of each, see the original works.
Vanilla Transformer. This network takes as input a set of
correspondencesM = {(p,q)} |p,q ∈ R2 including asso-
ciated descriptors, if available, and produces a set of fea-
tures fo. We use a vanilla Transformer encoder with N
layers, and map correspondences and descriptors as input.
We encode correspondences in a sinusoidal manner with K
bands, followed by a linear mapping to a size of c input to
the Transformer. If descriptive features of each correspon-
dence point are available, of dimension d < c, a Linear
layer maps them to c

4 and they are concatenated to corre-
spondence locations which are linearly mapped to 3c

4 .
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The Vanilla Transformer can also be used with dense
features f as input. If networks produce a joint feature
encoding for two images, the Transformer can be applied
directly to low-resolution features, without positional en-
coding. This occurs in the Regression model of Arnold et
al. [2], which we build upon in Table 5.
Regression MLP. This MLP maps Transformer features f0
to R ∈ R6 and t ∈ R3 using two hidden layers.
Gating MLP. This takes as input Transformer features con-
catenated with Regression MLP predictions and predictions
from the classical solver, along with the number of inlier
correspondences in the solver output, using several thresh-
olds. Predictions and number of inliers are normalized then
input as scalar features. As we analyzed in Figure 2, the
number of inlier correspondences is highly correlated with
the performance of solver pose estimate Ts. The Gating
MLP has two hidden layers and ends with a Sigmoid, pro-
ducing wt, wr ∈ (0, 1).

3.3. Prior-Guided Robust Pose Estimator

Now, having shown how the solver can help learning, how
can the learning based methods help the solver? The perfor-
mance of search-based solver methods like RANSAC [22]
is driven by searching over a model space by sampling
valid hypothesis and then ranking them based on a scor-
ing function. The scoring function serves as the measure
of probability of data under a hypothesis [74]. It’s typical
to use such solvers when estimating pose from a set of cor-
respondences, but direct application of these methods can
not be robust when correspondence estimation is done with
a scarce set. Our key idea is to use the predicted pose esti-
mate, T1, to influence both the search and the scoring func-
tion to help in data scarce scenarios.

We take inspiration from existing lines of work in us-
ing learning to better inform sampling and selection in
RANSAC-like algorithms [3, 4, 7, 56, 74]. We show that
we can recycle estimates from a learning-based model and
plug these estimates in simplistically. Specifically, an initial
estimated pose, T1, to modify the search function so as to
sample more hypothesis close to T1. Secondly, we modify
the scoring function to consider the distance to the T1 along
with inlier count.
RANSAC Preliminaries. The typical approach to pose
estimation from correspondences applies random sample
consensus (and variants) e.g. RANSAC, USAC [56] or
MAGSAC [3, 4] to model fitting e.g. 5, 7, or 8-Point al-
gorithms [26, 39, 44, 52]. These methods use a notion
of epipolar distance such as Sampson Error [24] for inlier
thresholding (soft and hard). More concretely, given a set
of 2D correspondence matches M = {(p,q)} | p,q ∈ R2,
a minimal subset of points is randomly sampled to fit a
model H via an n-point algorithm. The scoring function
counts number of inliers that have Sampson Error less than

a fixed threshold σ. Given, hypothesis H and set M of cor-
respondences, E(p,q|H), is the Sampson Error between
points p and q under H. The scoring function is defined as
score(H) =

∑
{p,q}∈M 1(E(p,q|H) < σ). Sampling re-

peats up to N times or until stopping heuristics are met for
efficiency [56], and the highest scoring model, e.g. the one
with the most inliers, is selected. Works like MAGSAC [3],
MAGSAC++ [4] have shown that improving scoring func-
tions to show better performance. For simplicity, we con-
tinue the exposition with thresholding based function that
are popular with classic RANSAC [22].
Limitations in Few-Correspondence Case. The heuristic
score of counting inliers typically is not effective especially
in the low-correspondence case [5]. When the number of
correspondences is only a small multiple of the number of
points needed to minimally define a model the algorithm
becomes particularly unreliable. Consider the extreme case
of doing pose recovery with calibrated cameras from nine
points, of which five are inliers. The minimal subset for
pose estimation is five points, and so while the true model
will have five inliers, so will any other sampled hypothesis.
Accordingly, the result will be random hypothesis.
Prior-Guided Estimator. We propose to incorporate a
learning based predictions to aid the solver in the case of
few or poor correspondences. We operationalize this by in-
corporating a prior model that estimates the likelihood of
hypothesis under the network’s prediction using a function
β(·|T1). The β(H|T1) measures the log probability of the
hypothesized model H under T1. We found it difficult to
measure probabilities in rotation and translation and weigh
them, so as a proxy, we compare how the models transform
a fixed set of grid points. In particular, we measure the neg-
ative of average squared distance between a fixed set of grid
points transformed by T1 and the same fixed grid trans-
formed by H. See Supplemental for details.

Now, we show how this β function can alter the scoring.
The modified scoring function measures the likelihood of
the hypothesis H under T1 along with measuring the like-
lihood of data [74] under H. It is defined as,

score(H) = αβ(H|T1) +
∑

(p,q)∈M

1

(
E(p,q|H) < σ

)
(2)

which is the (log) product of probability of the hypothesis
given our β prior function and the probability of the the
data,M, under H. We weigh the prior with a scalar, α ∈ R.
In this setting, the prior tie-breaks ambiguous cases where
two hypotheses have similar numbers of inliers, but has di-
minishing influence as |M| gets bigger. As |M| → ∞ ,
the prior’s impact is washed out entirely. This formulation
has the desired impact of significant effect when correspon-
dences are few and unbiased hypotheses are poor, and little
impact when correspondences are many.
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Figure 4. Ground Truth Robustness Study on Matterport3D.
Using true correspondence, the solver is nearly perfect. Adding
noise or outliers, it quickly degrades, while prior-guided Updated
solver is robust to outliers and the Transformer is robust to noise.
FAR matches or beats all methods across settings.

Sampling Good Hypotheses. Randomly sampling points
and estimating H is unlikely to lead to hypothesis con-
sistent with the model T1. To increase the chance to
sampling consistent hypothesis we want to sample a min-
imal subset that best agrees with the model. We achieve
this by weighing the correspondences by their agreement
with the model in turn influencing the as w(p,q) =
exp(−Sampson(p,q|T1)/τ).

In practice, we sample half the hypothesis using biased
sampling use uniform sampling for the other half. This
improves sample diversity in the case of many correspon-
dences, in which case unbiased sampling is very effective.

3.4. Implementation and Training Details

Across experiments, we use the Adam [34] optimizer. The
8-Pt ViT trains for about 300k iterations or 7 days on 10
GTX 1080Ti; Vanilla TF trains for about 600k iterations or
3 days. We select the checkpoint with the lowest valida-
tion mean rotation error, which tends to be marginally more
stable than translation error. We represent rotation in 6D
coordinates [84] and use L1 loss. Models are trained stage-
wise: first we train the Transformer to estimate pose, then to
estimate pose jointly with a vanilla solver, then to estimate
jointly with the prior-based solver. We find this progres-
sive training improves final performance. We implement in
PyTorch [53] Lightning [21], using TIMM [78] for the ViT.
8-Point ViT. We train 8-Point ViT end-to-end with the fea-
ture extraction backbone. We found including a self and
cross-attention LoFTR layer significantly improved learn-
ing capacity, while additional layers did not help further.
Vanilla Transformer. We use a 6-layer encoder with 8
heads and 512 feature size followed by global average pool-
ing. We use K = 42 bands for positional encoding, and
linearly map them to size 384, concatenating descriptive
features linearly mapped to size 128. We found random
dropout on correspondences with p = 0.1 helps perfor-
mance. We cache correspondences for fast training. Train-
ing speed is ≈12 iterations per second on a GTX 1080Ti.

Table 1. Camera Pose Estimation on Matterport3D.
Correspondence-based methods have low median but high mean
error, and do not produce translation scale. Regression-based
methods are less precise but produce scale. FAR builds upon both,
resulting in low median and mean error, with translation scale.

Translation (m) Rotation (◦)
Method Med.↓ Avg.↓ ≤1m↑ Med.↓ Avg.↓ ≤ 30↑
[60] + [58] 3.34 4.00 8.3 50.98 57.92 29.9
Assoc.3D [55] 2.17 2.50 14.8 42.09 52.97 38.1
Sparse Planes [30] 0.63 1.25 66.6 7.33 22.78 83.4
PlaneFormers [1] 0.66 1.19 66.8 5.96 22.20 83.8
8-Point ViT [62] 0.64 1.01 67.4 8.01 19.13 85.4
NOPE-SAC-Reg [71] 0.52 0.94 73.2 2.77 14.37 89.0
SuperGlue [65] - - - 3.88 24.17 77.8
LoFTR [70] - - - 0.23 9.49 91.4
LoFTR+Reg. Scale 0.85 1.21 56.3 0.26 9.66 91.2

FAR (Vanilla TF) 0.37 0.67 81.9 0.26 6.14 94.2
FAR 0.25 0.49 89.2 0.20 4.93 95.8

Prior-Guided Estimator. We implement in Kornia [61]
and use 2k random samples without early stopping and in-
lier threshold on L2 Sampson Error σ of 3 × 10−7, finding
these results most closely matched OpenCV [8] output us-
ing LoFTR settings. For the Prior, we use τ = 0.1 and
α = 3.33 found through grid search on the validation set.

4. Experiments
We design our experiments to measure the effectiveness of
FAR in achieving our stated goals: flexible, accurate and ro-
bust 6DoF pose estimation. We first validate robustness by
measuring model performance as a function of increasingly
perturbed ground truth. We next test precision to moderate
view change and robustness to large view change by com-
paring to the state of the art in wide-baseline relative pose.
Having demonstrated accuracy and robustness, we next ver-
ify model flexibility to choice (or lack) of dense feature
method, correspondence estimation method, and dataset
size. Finally, we compare to the state of the art on addi-
tional indoor and outdoor datasets.

4.1. Robustness to Correspondence Perturbations

Here, we assume the image correspondences are given and
study how variations of our method and baselines perform
with varying noise-levels applied to the correspondences.
Dataset. We use image pairs collected using the Habi-
tat [66] embodied simulator upon Matterport3D [12], fol-
lowing the setup of Jin et al. [30]. It has 32k train / 5k val /
8k test pairs with small to moderate overlap (average 53◦ ro-
tation, 2.3m translation, 21% overlap). The variety in view
change enables the study of both precision upon moderate
cases and robustness to highly challenging cases.
Metrics. Throughout Matterport3D experiments, we re-
port three metrics for rotation and translation: median er-
ror, mean error, and percentage of errors within a threshold.
These are standard metrics, which identify our two quali-
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Table 2. Ablations on Matterport3D. (Top) We improve signifi-
cantly upon LoFTR using a combination of learned and classical.
(Middle) This result holds for the case of no input features, where
we use the Vanilla TF. (Bottom) Scaling Solver translation is im-
portant to FAR performance; selecting separate weights for R and
T improves robustness.

Translation (m) Rotation (◦)
Transformer: 8-Point ViT Med.↓ Avg.↓ ≤1m↑ Med.↓ Avg.↓ ≤30↑
LoFTR + Solver + Scale Ts 0.85 1.21 56.3 0.26 9.66 91.2
FAR: Transformer Tt 0.38 0.64 85.4 4.51 9.94 94.2
FAR: One Round T1 0.25 0.49 89.0 0.20 5.08 95.7
FAR: Updated Tu 0.25 0.50 88.4 0.20 5.35 95.0
FAR: Full T 0.25 0.49 89.2 0.20 4.93 95.8

Transformer: Vanilla TF

LoFTR + Solver + Scale Ts 0.85 1.21 56.3 0.26 9.66 91.2
FAR: Transformer Tt 0.42 0.75 79.1 3.87 10.8 92.5
FAR: One Round T1 0.37 0.67 81.8 0.26 6.41 93.8
FAR: Updated Tu 0.37 0.68 81.5 0.25 6.69 93.7
FAR: Full T 0.37 0.67 81.9 0.26 6.14 94.2

Prediction Selection

Unscaled Solver ts 0.31 0.55 87.4 0.21 5.09 95.8
One Weight (wr = wt) 0.25 0.50 88.7 0.20 5.04 95.8
FAR 0.25 0.49 89.2 0.20 4.93 95.8

ties of interest: precision (median) and robustness (mean
and percentage). We follow prior work [30, 71] in using ro-
tation threshold of 30◦ and translation threshold of 1m. For
the ground truth study, for brevity we report median error
across a variety of settings, which is an indicative summary
of performance. Additional results are in Supplemental.
Setup. Beginning with ground truth correspondences, we
(1) Apply Gaussian noise with standard deviation from
0 to 32 pixels, upon 480x640 images; (2) Replace true
correspondences with randomly sampled coordinates (out-
liers), with P(Outliers) from 0 to 0.875. Models are trained
and evaluated upon each noise and outlier setting indepen-
dently; e.g. FAR is trained and evaluated four times to make
Correspondence Noise Graph in Figure 4, left.
Ablations. We consider the following cases:
(1) Solver Ts. Using LoFTR’s solver, i.e.,
RANSAC [22]+5-Point Algorithm [52]
(2) FAR: Transformer Tt. Pose Transformer output pose.
This is a Vanilla Transformer, since dense features are not
available as input; only correspondences.
(3) FAR: Updated Tu. Solver output using FAR’s Prior
(4) FAR: Full T. Full FAR: learned combin. of Tu and Tt

Ablation Results. Figure 4 shows Solver has nearly perfect
results on ground truth correspondences but is not robust to
noise or many outliers. FAR: Transformer is less precise
on ground truth but is more robust as outlier frequency and
particularly noise increases. The prior is highly effective at
leaving FAR: Updated robust to outliers, showing close to
0◦ median error even with 87.5% outliers. The full method
offers the best of all: precise estimation on ground truth
correspondences with the best or equal to best robustness to
noise and outliers.

Table 3. Approach Flexibility to Features and Correspon-
dences. FAR yields improvement using features from 8-Pt ViT
or LoFTR; and correspondences from SuperGlue or LoFTR.

Feats. Corr. Pose Est. Translation (m) Rotation (◦)
Med.↓ Avg.↓ ≤1m↑ Med.↓ Avg.↓ ≤ 30↑

8-Pt ViT - 8-Pt ViT 0.64 1.01 67.4 8.01 19.1 85.4
8-Pt ViT SuperGlue FAR 0.62 1.01 68.3 7.02 16.6 86.8
8-Pt ViT LoFTR FAR 0.63 1.01 68.5 7.06 17.0 86.9

LoFTR LoFTR RANSAC+5Pt - - - 0.23 9.49 91.4
- LoFTR FAR (Vanilla TF) 0.37 0.67 81.9 0.26 6.14 94.2
LoFTR LoFTR FAR 0.25 0.49 89.2 0.20 4.93 95.8
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Figure 5. Evolving with Dataset Size. The Transformer learns to
rely more heavily upon the solver if data is limited (40% data size),
and learns to use Transformer pose estimations as data scales and
performance improves (100% data size).

4.2. Wide-Baseline Pose on Matterport3D

In this section, we use the same Matterport3D dataset and
the metrics used in Sec. 4.1, but the inputs are images rather
than the GT correspondences.
Baselines. We compare against state-of-the-art solver-
based and learning-based baselines. For solver-based
methods, we choose the popular LoFTR [70] and Super-
Glue [65]. In the learned space, we compare to end-to-end
classical-estimation-inspired ViT, 8-Point [62]; planar map-
ping and optimization methods NOPE-SAC [71], Plane-
Formers [1] and Sparse Planes [30]; and 3D reconstruction
method Associative3D [55]. In this set of experiments our
FAR builds upon LoFTR backbone and correspondences.
We additionally report results using only correspondence
and descriptor as input, as “FAR (Vanilla TF)”.
Results. Table 1 shows the quantitative results on Matter-
port3D. Among the prior works, end-to-end methods such
as 8-Point ViT [62] perform well in absolute Translation,
while correspondence-solver methods e.g. LoFTR [70] per-
form best in rotation. FAR sets a new standard in both met-
rics, surpassing the best prior baseline (NOPE-SAC-Reg)
by a large margin. It reduces the median and mean transla-
tion errors by about 50%: from 0.52 to 0.25 and from 0.94
to 0.49, respectively. Additionally, it decreases the mean ro-
tation error by almost 50% compared to the best prior work
(LoFTR), from 9.66 to 4.93. Even with only correspon-
dence available as input, “FAR (Vanilla TF)” is typically
better than all prior work by a large margin.
Ablations. To investigate the source of FAR’s out-
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Figure 6. Rotation Error on InteriorNet and StreetLearn. Even
when Correspondence + Solver method is relatively poor, we can
still leverage it to improve regression results. “Learning-Based”:
8-Point ViT [62]. “Corr. + Solver”: LoFTR [70].

performance, we conduct ablations on Matterport3D using
the same setup of Sec. 4.1, except correspondences are pre-
dicted. In addition to ablations discussed in Section 4.1, we
consider model output after One Round (T1) to study the
impact of the prior-guided solver upon the final model. We
further explore performance by using two different Trans-
former architectures: the dense feature-based Transformer:
8-Point ViT (referred to as FAR in other experiments), and
the correspondence-only Transformer: Vanilla TF. Finally,
we evaluate the design choices outlined in Section 3.2 un-
der the Prediction Selection category: Unscaled Solver ts,
where Solver translation is not scaled by Transformer mag-
nitude; and One Weight (wr = wt), which uses equal
weights for Transformer translation and rotation prediction.
Ablation Results. As shown in Tab. 2, we can clearly ob-
serve the same trends from Fig. 4: the solver is precise
in most cases characterized by low median rotation error.
However the solver suffers from high mean error (due to
outliers) and poor translation errors. Incorporating FAR’s
prior significantly improves the solver’s mean rotation error.
In contrast, Transformer regression outputs are not nearly
as precise, with median rotation error of above 4◦, but it
reduces the ratios of large errors (those greater than 1m or
30◦). FAR enhances the best results achieved by both the
Transformer and Solver. These patterns hold true for the
Vanilla Transformer as well. In Prediction Selection, we see
predicting Solver translation scale is important for transla-
tion performance, while separate weighting for rotation and
translation improves robustness.

4.3. Approach Flexibility

We then evaluate the flexibility of FAR in terms of the fea-
ture extractor, correspondence estimator, and dataset size.
Dataset and Metrics. We continue using the Matterport3D
dataset and metrics as in Section 4.1.
Alternative Approaches. To assess the versatility of FAR,
we explore options that are orthogonal to our core contribu-
tion. Specifically, we examine three settings for feature esti-
mation: the recent SOTA methods LoFTR and 8-Point ViT,
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Figure 7. Error on Map-free Relocalization. FAR leverages
Solver output to improve regression results on this highly chal-
lenging dataset. “Corr. + Solver + Scale”: LoFTR + DPT [59]
trained on KITTI [23]. “Learning-Based”: 6D Reg.

as well as a scenario without dense features. Additionally,
we evaluate two recent SOTA settings for correspondence
estimation: LoFTR, and SuperPoint [16] + SuperGlue [65].
Results. Table 3 shows FAR improves upon 8-Pt ViT, us-
ing either SuperGlue or LoFTR correspondences. Similarly,
FAR improves LoFTR, whether it employs both LoFTR fea-
tures and correspondences or just the correspondences.
Dataset Scaling. We next present the proposed method
when trained on a version of the Matterport3D dataset that
has been randomly subsampled to 40% of its original data
size. In Figure 5, we compare rotation error (left) and solver
weight (right) of 40% size and full size. Note that as the
training dataset size increases from 40% to 100%, both the
solver weight and error decrease. This trend aligns with ex-
pectations: as the Transformer’s estimated pose accuracy
improves with more training data, it gains a larger influence
in the final output, enhancing overall performance. The re-
sult suggests a fixed weighting of learned and solver output
is not sufficient for best results.

4.4. Wide-Baseline Pose on Additional Datasets

We evaluate our method’s performance on various datasets
to assess its versatility. We follow Cai et al. [10] and use In-
teriorNet [40], a synthetic collection of indoor home scenes,
and StreetLearn [48], which features outdoor city street
photos. Both datasets consist of 90◦ field-of-view image
crops upon panoramas. Image pairs are chosen from dif-
ferent panoramas with varying overlaps, facilitating the as-
sessment of precision and robustness in scenarios with both
large (> 45◦) and small (< 45◦) overlaps. Additionally, we
use Map-free Relocalization [2], a challenging dataset of
user-collected videos surrounding outdoor places of inter-
est e.g. sculptures or fountains. SfM has been applied to
the videos, so translation with scale can be evaluated.
Metrics. For InteriorNet and StreetLearn, we report rota-
tion error only, in line with prior work [10, 62], using a 10◦

threshold. For Map-free Relocalization, we calculate me-
dian translation and rotation errors per video, then average
these. We also include the Virtual Correspondence Repro-
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Table 4. Rotation Performance on InteriorNet and StreetLearn. Correspondence-based methods (top) struggle to generalize to this
data, while regression methods learn helpful features. Building off 8-Point ViT features, we can still utilize LoFTR correspondences to
boost performance. Errors were calculated only on successful pairs for SIFT and SuperPoint; gray text indicates failure over 50% of pairs.

InteriorNet StreetLearn
Large Overlap (◦) Small Overlap (◦) Large Overlap (◦) Small Overlap (◦)

Method Med.↓ Avg.↓ ≤ 10↑ Med.↓ Avg.↓ ≤ 10↑ Med.↓ Avg. ↓ ≤ 10↑ Med.↓ Avg.↓ ≤ 10↑
SIFT* [45] 2.95 7.78 55.5 10.0 18.2 18.5 3.13 18.9 22.4 13.8 38.8 5.7
SuperPoint* [16] 2.79 5.46 65.9 5.82 11.6 11.7 1.79 6.38 16.5 6.85 6.80 1.0
LoFTR [70] 0.54 1.85 97.0 2.64 14.3 70.4 24.8 36.4 31.6 51.2 58.6 19.9
Reg6D [84] 6.91 10.5 67.8 11.4 21.9 44.1 6.02 12.3 69.1 7.59 15.1 63.4
Cai et al. [10] 1.10 2.89 97.6 1.38 10.2 89.8 2.91 9.12 87.5 3.49 13.0 84.2
8-Point ViT [62] 1.83 2.90 97.9 2.38 4.48 96.3 2.43 4.08 90.1 3.25 9.19 87.7

FAR 0.60 1.16 98.5 1.22 3.42 95.4 1.81 3.01 96.7 2.07 7.89 92.4

Table 5. 6DoF Performance on Map-free Relocalization. We
compare against the strongest baselines from [2]; for all compar-
isons see the original paper. FAR uses the 6D Reg backbone,
adding LoFTR or SuperGlue correspondences to beat 6D Reg.

Method Pose Error VCRE

Avg. Med.↓ Prec.↑ AUC↑ Avg. Med.↓ Prec.↑ AUC↑
LoFTR 199cm 30.6◦ 0.15 0.35 168px 0.35 0.61
SuperGlue 188cm 25.4◦ 0.17 0.35 160px 0.36 0.60
Reg Ang. [2] 210cm 33.7◦ 0.09 - 200px 0.30 -
6D Reg [2] 168cm 22.5◦ 0.06 - 147px 0.40 -

FAR (SG) 149cm 17.2◦ 0.17 0.35 135px 0.44 0.67
FAR (LoFTR) 148cm 18.1◦ 0.18 0.39 137px 0.44 0.68

jection Error (VCRE) metric to measure reprojection errors
(see [2] for details).

Baselines. We compare our method with SOTA correspon-
dence and pose estimation techniques. For InteriorNet and
StreetLearn, we compare to Cai et al.’s [10] correlation
volume-based learning, SuperPoint [16], and the classical
SIFT method [45]. We use LoFTR adapted for InteriorNet
using Matterport3D, and for StreetLearn using MegaDepth,
due to the lack of depth data in these datasets for training
correspondences. Since LoFTR cannot be finetuned, we
find 8-Point ViT features are more effective, and use these
as input to FAR, along with LoFTR correspondences. See
Supplemental for details.

Arnold et al. [2] train a variety of pose estimation meth-
ods on Map-free, including “6D Reg”, which creates a cor-
relation volume [31, 32] and warps accordingly, followed
by a ResNet [27], and is supervised upon 6D rotation [84].

Results. Tab. 4 and Fig. 6 show that 8-Point ViT [62]
achieves impressive mean errors, under 5◦, on InteriorNet,
even for small overlap pairs. FAR still adds precision on
top of the 8-Point ViT. On the challenging StreetLearn data,
FAR significantly outperforms the state of the art, despite
LoFTR not generalizing well to StreetLearn.

6D Reg is the strongest overall baseline on Map-free Re-
localization, so we use its features for FAR, taking corre-
spondences from LoFTR or SuperGlue. In both cases, FAR

Matterport3D InteriorNet StreetLearn Map-free

Rot Mag: 88º
C+S: 84º
L-B: 54º

FAR: 1.2º

Rot Mag: 43º
C+S: 56º
L-B: 17º

FAR: 2.3º 

Rot Mag: 84º
C+S: 83º
L-B: 38º
FAR: 22º 

Rot Mag: 51º
C+S: 0.9º
L-B: 8.6º
FAR: 0.3º 

Figure 8. Success Cases. For some challenging wide-baseline
image pairs, our method often dramatically outperforms the base-
lines. “Learning-Based”: LoFTR [70] with 8-Pt. ViT [62] head
(Matterport3D), 8-Pt. ViT (InteriorNet, StreetLearn), 6D Reg [2]
(Map-free). “Corr. + Solver”: LoFTR.

improves upon 6D Reg and other methods (see Tab. 5 and
Fig. 7). These results across datasets show FAR’s adaptabil-
ity to different backbones and its robustness to sub-optimal
correspondence estimates, highlighted in Fig. 8.

5. Conclusion
In this work, we address the problem of 6DoF relative cam-
era pose estimation given a wide-baseline image pair. Our
introduced FAR represents a simple yet potent approach
that merges the best aspects of correspondence-based and
learning-based methods. This results in precise and robust
outcomes, adaptable to various backbones and solvers.
Limitations and Societal Impact. FAR consists of sev-
eral components and implements Prior-Guided RANSAC in
Kornia, slowing inference speed to 3.3 it/sec on 10 1080Ti
GPUs; analysis vs. other methods appears in Supplemental
Figure 11. Training upon affluent homes of Matterport3D
can result in worse performance on more typical residences.
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This Supplement includes additional detail for the
method and experiments, as well as additional experiments
and explanation too long for the main paper.

Appendix A. Network Architecture

We detail the full model along with ablations below as a
function of their components; these correspond to predicted
pose boxes in Figure 3. Architecture is overviewed in Ta-
bles 6-7 and detailed in Tables 8-12.
Solver Ts. Pose estimation from a correspondence estima-
tor followed by a Kornia [61] implementation of RANSAC
+ 5-Point Algorithm, optionally scaled by predicted transla-
tion scale. Compare to FAR: Full T, this ablation does not
use the Transformer, nor combine Solver and Transformer
predictions, nor do a second round of prior-guided solver
and combining with Transformer.

We refer to this as “Solver” if it uses perturbed ground
truth correspondences as input (Figure 4), meaning no cor-
respondence estimator is used. We refer to this as Corr. +
Solver in experiments if correspondence estimator is used
(Figure 6 and 8). We refer to it as Corr. + Solver + Scale if
predicted scale is used to evaluate absolute translation error
(Figures 1, 2, 7; Table 2); we refer to it as LoFTR + Solver
+ Scale if LoFTR is used (Table 2).

Predicted scale for Solver Ts is the output of the Trans-
lation Scale Predictor network detailed in Table 12. It takes
dense features f as input and outputs a single scalar, which
is multiplied by translation angle output from RANSAC +
5-Point to obtain final translation. Early in experiments, we
used a transformer-based architecture to predict scale, but
found this CNN-based method performed better.
FAR: Transformer Tt. Predicted 6DoF pose from FAR’s
Transformer. Compare to FAR: Full T, this ablation does
not use the Solver, nor combine Solver and Transformer
predictions, nor do a second round of prior-guided solver
and combining with Transformer.

In the case dense features are available, the 8-Point ViT
is used, if only correspondences plus descriptors are avail-
able, the Vanilla TF is used. Each is detailed in Table 8 and
Table 9, respectively.
FAR: One Round T1. Predicted 6DoF pose from one
round of FAR, which consists of the weighted linear com-
bination in 6D [84] space of Tt and Ts, weighted by w as
described in Equation 1. Compare to FAR: Full T, this ab-
lation does not do a second round of prior-guided solver and
combining with Transformer.
FAR: Updated Tu. Pose estimation from FAR’s prior-
guided RANSAC + 5-Point Algorithm, using T1 as a prior.
Compare to FAR: Full T, this ablation does not do a second
round of combining with the Transformer. Note: results
from FAR: Updated Tu tend to be less accurate than FAR:
One Round T1. This is expected, as FAR: Updated Tu is

intended to be used in combination with Transformer out-
put Tt to form final output. In other words, our goal of
FAR: Updated Tu is to improve upon Solver Ts, resulting
in better final output after combining with Tt.
FAR: Full T. Final predicted 6DoF pose consisting of the
weighted linear combination of Tt and Tu, weighted by w.

For LoFTR Feature Extractor and Correspondence Esti-
mator, we use H = 480,W = 640 and D = 256, h =
60, w = 80, except on Map-free Relocalization experi-
ments, where images are size H = 720,W = 544, so
using the same downsampling, h = 90, w = 68. For Super-
Glue Correspondence Estimator, we use H = 480,W =
640. For 8-Point ViT Feature Extractor (InteriorNet and
StreetLearn experiments), we use H = 224,W = 224
and D = 192, h = 24, w = 24. For 6D Reg Feature
Extractor (Map-free Relocalization experiments), we use
H = 360,W = 270 and D = 256, h = 12, w = 9. Map-
free Relocalization setup differs slightly from other setups
to use 6D Reg features as input rather than LoFTR or 8-
Point ViT, and 6D Reg produces a single feature vector for
a pair of images rather than two; for details see Section C.4.
In Table 8, we break down the architecture of Transformer
Tt. 8-Point ViT output has d = D/nh + pe = 70, where
nh = 3 is the number of heads, and pe = 6 is the size of
positional encodings.

Appendix B. Prior-Guided Robust Pose Esti-
mator

In our implementation of prior guided pose estimation we
use RANSAC as the solver to search over the hypothesis
space and also score our models with inlier scores. We
use the five-point algorithm to estimate the Essential Ma-
trix [25]. Choosing the five-point algorithm is beneficial
in the case of known intrinsics (available in all datasets we
use) as it only requires 5 correspondences to estimate a min-
imal model. This increases the chance of sampling a better
hypothesis H over multiple RANSAC iterations. The five-
point algorithm recovers the essential matrix corresponding
to a minimal set (5) and we convert this to a translation and
rotation matrix (up to scale).
Prior Probability. The β(H|T1) measures the log prob-
ability of the hypothesized model H under T1. The H is
the essential matrix and T1 is the 6D transformation matrix
from round of prediction. Since it is difficult to measure
the probability of H under T1 we design a proxy formula-
tion. We simplify the formulation with by computing the
implied transforms {T{H,k}}2k=1 corresponding to each of
two possible solutions for the rotation matrix.

There are multiple possible ways to measure the prob-
ability of the transform TH,k under T, one possible solu-
tion is to independently measure the distribution for rotation
and translation component. This approach however requires
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Table 6. Model Architecture: FAR. High-level first defined, followed by detailed components. N varies depending on the number of
correspondences. For LoFTR Feature Extractor and Correspondence Estimator, we use H = 480,W = 640, D = 256, h = 60, w = 80.
Variables for alternative experiments described in text.

Overview
Operation Inputs Outputs Output Shape

Input Image - - 2× 3×H ×W
Feature Extractor Input Image fi, fj 2×D × h× w
Correspondence Estimator Input Image M N × 4
8-Point ViT Tt fi, fj Tt, w 9, 2
Solver Ts M Ts 9
One Round T1 Ts, Tt, w T1 9
Updated Tu M, T1 Tu 9
Full T Tu, Tt, w T 9

Table 7. Model Architecture: FAR (Vanilla TF).

Overview
Operation Inputs Outputs Output Shape

Input Image - - 2× 3×H ×W
Correspondence Estimator Input Image M N × 4
Vanilla Transformer Tt M Tt, w 9, 2
Solver Ts M Ts 9
One Round T1 Ts, Tt, w T1 9
Updated Tu M, T1 Tu 9
Full T Tu, Tt, w T 9

Table 8. Model Architecture: Transformer Tt (8-Point ViT).

Overview
Operation Inputs Outputs Output Shape

Input Features - fi, fj 2×D × h× w
LoFTR [70] Self-Attn. Block fi, fj fi,1, fj,1 2×D × h× w
LoFTR Cross-Attn. Block fi,1, fj,1 fi,2, fj,2 2×D × h× w
8-Point ViT [62] Cross-Attn. Block fi,2, fj,2 fo 2×D × d
Regression MLP fo Tt 9
Gating MLP fo w 2

Table 9. Model Architecture: Transformer Tt (Vanilla TF) Correspondences optionally include descriptors. If do not, skip Linear
Layer, use only Positional Encoding as input to Vanilla Transformer.

Overview
Operation Inputs Outputs Output Shape

Input Corr. - M N × 2× 2
Input Descriptor - Md N × 2× 256
Positional Encoding M fpos N × 384
Linear Layer Md fin N × 128
Vanilla Transformer fpos, fin ftmp N × 512
Global Avg. Pooling ftmp fo 512
Regression MLP fo Tt 9
Gating MLP fo w 2
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Table 10. Model Architecture: Regression MLP.

Overview
Operation Inputs Outputs Output Shape

Input Features - fo shape(fo)
Linear fo ftmp0 512
ReLU ftmp0 ftmp1 512
Linear ftmp1 ftmp2 512
Linear ftmp2 ftmp3 512
ReLU ftmp3 ftmp4 512
Linear ftmp4 Tt 9

Table 11. Model Architecture: Gating MLP Shape of fo is 512 in the case of Vanilla Transformer and D in the case of 8-Point ViT.

Overview
Operation Inputs Outputs Output Shape

Input Features - fo shape(fo)
Input Transformer Predicted Pose Tt - Tt 9
Input Solver Predicted Pose Ts - Ts 9
Input Number of Solver Inliers - ni 3
Linear fo, Tt, Ts, ni ftmp0 512
ReLU ftmp0 ftmp1 512
Linear ftmp1 ftmp2 512
ReLU ftmp2 ftmp3 512
Linear ftmp3 wtmp 2
Sigmoid wtmp w 2

Table 12. Model Architecture: Scale Prediction Network.

Overview
Operation Inputs Outputs Output Shape

Feature Extractor Input - fi, fj 2×D × h× w
MaxPool2D fi, fj fi,a, fj,a 2×D × h/2× w/2
Conv2D fi,a, fj,a fi,b, fj,b 2×D/2× h/2× w/2
ReLU fi,b, fj,b fi,c, fj,c 2×D/2× h/2× w/2
MaxPool2D fi,b, fj,b fi,c, fj,c 2×D/2× h/4× w/4
Conv2D fi,c, fj,c fi,d, fj,d 2×D/4× h/4× w/4
ReLU fi,d, fj,d fi,e, fj,e 2×D/4× h/4× w/4
Conv2D fi,e, fj,e fi,f , fj,f 2×D/16× h/16× w/16
ReLU fi,f , fj,f fi,g, fj,g 2×D/4× h/16× w/16
Linear fi,g, fj,g f0 512
ReLU f0 f1 512
Linear f1 f2 512
ReLU f2 f3 512
Linear f3 s 1

tuning different weights for each of the components. In our
case we measure the difference in the two transformation
by computing the implied effect of the transformations on a
given point set.

Specifically, for a randomly sampled point set G ≡
{g}Ll=1 in R3 such that gl ∈ (−3,−3)3. We transform these

points with T{H,k} and T1. We then compute the squared
residuals, rNi , as distance between the transformed point
sets. Assuming the distribution of residuals to be proxy for
the pose prior, we can now compute the probability of resid-
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uals under a standard Gaussian distribution as,

β′(TH,k,T) = log(

L∏
l=1

exp(−r2l )/Z), (3)

Z is the normalization constant for the probability distribu-
tion. We have two hypothesis corresponding to each H so
we choose solution with the highest log likelihood that best
fits with prior to recover β(H,T) as,

β(H,T) = max

(
β′(T{H,1},T), β′(T{H,2},T)

)
(4)

Scoring Function. Using the prior score above now we
can combine this with our existing RANSAC inliers scoring
function by combining the log likelihood for the hypothesis
H under T and the likelihood of correspondence set M un-
der the hypothesis H as,

score(H) = αβ(H,T) +
∑

(p,q)∈M

1

(
E(p,q|H) < σ

)
, (5)

here σ denotes the inlier threshold and E(p,q|H) measures
the Sampson error for correspondences p,q under the es-
sential matrix H

Appendix C. Additional Experimental Details
Our typical training procedure is to train the Correspon-
dence Estimator, followed by FAR: Transformer Tt jointly
with the backbone, followed by FAR: One Round T1, fol-
lowed by FAR: Full T. At each step, we train until val-
idation mean rotation error plateaus, and reload the exist-
ing components for the next round of training. In some
cases different steps are not applicable e.g. we build upon
learned pose backbone in Map-free Relocalization and can-
not train the prior on StreetLearn or InteriorNet. We use
OneCycleLR [69] scheduler, except if using 6DReg back-
bone; here we follow prior work [2] in using a constant
learning rate. FAR’s Kornia-based solver is slower than
OpenCV, so for speed we use OpenCV solver to compute
Ts in our final model. For fair comparison in ablations, we
compute Ts using Kornia.

C.1. Ground Truth Robustness Study

In this experiment, we are given correspondences as in-
put, so we proceed directly to training FAR: Transformer
Tt and remaining steps. Training upon perturbed ground
truth correspondences typically plateaus after 90 epochs for
FAR: Transformer Tt and FAR: One Round T1; we find
10 epochs of additional training is sufficient for FAR: Full
T. We report Tt output after FAR: Transformer Tt train-
ing rather than after training with the other components in

Far: Full T. This is because after full training, Tt is in-
accurate standalone, since it is trained to be effective in
conjunction with Ts. We report Tu and T after full train-
ing of T. We use ground truth correspondence computed
via LoFTR’s correspondence algorithm from true pose and
depth, which consists of a mutual nearest neighbor check.

C.2. Wide-Baseline Pose Estimation on Matter-
port3D

On the full dataset, we found LoFTR reached best perfor-
mance after 30 epochs, FAR: Transformer Tt reached best
performance after 39 epochs, FAR: One Round T1 reached
best performance after 32 epochs, FAR: Full T plateaued
after 14 epochs. If using the Vanilla Transformer, FAR:
Transformer Tt reached best performance after 89 epochs,
FAR: One Round T1 reached best performance after 69
epochs, FAR: Full T plateaued after 12 epochs. We report
Tt after its training for the reasons detailed in C.1. In ad-
dition, we report Ts output after Correspondence Estimator
training for consistency with the Correspondence + Solver
baseline throughout the paper. This has little impact upon
results compared to reporting after full training of T.

C.3. Approach Flexibility

Flexibility to Features and Correspondences. 8-Point
ViT features refers to spatial features after all self-attention
layers in the 8-Point ViT backbone, since the cross-attention
layer in 8-Point ViT produces only a flattened array of fea-
tures. Given this input, FAR: Transformer Tt uses the 8-
Point ViT variant. This normally consists of a LoFTR layer
followed by 8-Point ViT cross-attention. However, in this
special case of 8-Point ViT input, we drop the LoFTR layer
to make FAR: Transformer Tt equivalent to full 8-Point ViT
output. This allows for closer comparison to the original 8-
Point ViT work, while using a specialized architecture, in
which inserting a LoFTR layer would not likely be helpful.
FAR: Full T can then use FAR: Transformer Tt combined
with FAR: Updated, with solver output coming from either
LoFTR or SuperGlue.

We follow 8-Point ViT training procedure for the model,
training for 120k iterations with batch size 60, or about 225
epochs. We then repeat this procedure for FAR: One Round
T1 given correspondences from LoFTR or SuperGlue. Fi-
nally, we train for 20k iterations for FAR: Full T.

Dataset Size. On the 40% sized dataset, we found LoFTR
reached best performance after 86 epochs, FAR: Trans-
former Tt reached best performance after 94 epochs, FAR:
One Round T1 reached best performance after 43 epochs,
FAR: Full T plateaued after 27 epochs.
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Figure 9. Ground Truth Robustness Study on Matterport3D:
Mean Rotation Error. Using true correspondence, the solver has
low mean error, which is nonzero because of some image pairs
having limited ground truth correspondences, leading to small
mean error. As with median error, adding noise or outliers causes
it to quickly degrade, while prior-guided Updated solver is robust
to outliers and Transformer is robust to noise. FAR matches or
beats all methods across settings.

C.4. Wide-Baseline Pose Estimation on Additional
Datasets

InteriorNet and StreetLearn. We use 8-Point ViT as
our feature extractor on InteriorNet and Streetlearn as it is
SOTA and correspondence-based methods such as LoFTR
cannot be trained on the data as it does not contain depth.
We follow the training setup of Section C.3, training FAR:
Transformer TT and FAR: One Round T1 sequentially,
reloading at each new phase of training, and following 8-
Point ViT training schedule for each phase. We cannot
use the prior since it requires translation prediction, which
cannot be supervised, since the dataset does not contain
translation information. Therefore, FAR: Full T is the
output from FAR: One Round T1. However, we find re-
sults are strong even without prior. On InteriorNet, we use
LoFTR pretrained on Matterport3D for correspondences.
On StreetLearn, correspondences come from LoFTR pre-
trained on MegaDepth.

Map-free Relocalization. We use 6D Reg as our feature
extractor for similar reasons to InteriorNet and StreetLearn:
6D Reg has most competitive rotation and translation errors
of existing methods, and correspondence-estimation meth-
ods such as LoFTR or SuperGlue cannot be trained on the
dataset since it does not contain depth.

6D Reg architecture is different from 8-Point ViT and
LoFTR in that it warps features to a common frame before
estimating pose. This setup is distinct from the canonical
setting of having two dense feature matrices as input, but
FAR can nevertheless be adapted. FAR’s Transformer Tt

takes features after the penultimate ResNet layer of 6D Reg,
which yields feature size of 12× 9× 256. The Transformer
is a Vanilla Transformer consisting of 6 Transformer En-
coder layers with feature size 256 and 8 heads. We choose
the penultimate layer as input to the Transformer as these
late features are instructional for predicting pose, and are
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Figure 10. FAR: Full T vs. FAR: One Round T1. After
one round, FAR produces high-quality results, making further im-
provement difficult. However, a second forward pass through the
solver injected with a prior (FAR: Full T) improves solver es-
timates. Correspondingly, the Transformer learns to give more
weight to the solver (right), and there is a nontrivial improvement
in rotation error in difficult cases (left, 100-250 inliers).

of feasible resolution and feature size for a Transformer.
The Vanilla Transformer is lightweight, allowing this to be
added to a light 6D Reg architecture without significantly
impacting run-time or batch size.

We begin from a 6D Reg backbone pretrained for 50
epochs, train FAR: Transformer Tt for 20 epochs, train
FAR: One Round T1 for 30 epochs (50 if using Super-
Glue correspondences; which runs faster), followed by an-
other 3 for FAR: Full T. Correspondences come from either
LoFTR or SuperGlue, both of which are pretrained on out-
door environments. SuperGlue is faster than LoFTR, lead-
ing to faster network speed during training and more itera-
tions in the same amount of time. FAR: Full T training is
slower given Kornia solver, so we train for only 3 epochs.
We nevertheless find this training beneficial.

Appendix D. Additional Results

D.1. Ground-Truth Robustness Experiment

Figure 9 presents mean rotation errors of methods con-
fronted with ground truth correspondences, with varying
amounts of noise and outliers. It corresponds to Figure 4,
except mean rotation error is reported here rather than me-
dian rotation error in Figure 4. The results correspond to
those in Figure 4: the solver is strong faced with little noise
or few outliers, but degrades severely. Prior-guided Updated
solver is robust to outliers, while Transformer is more ro-
bust to noise, at the expense of precision. FAR produces
the best of both results in either low perturbation or high
perturbation. Note solver median errors are 0, but mean
errors are nonzero due to image pairs occasionally having
very few ground truth correspondences, producing high er-
rors accordingly. However, this does not impact the experi-
mental conclusion.
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Figure 11. Efficiency on Matterport (Log Scale vs. Log Scale).
The efficient frontier includes LoFTR+Solver, T1 and T. FAR
Tt is strictly better than 8-Point ViT. FAR T1 cuts error almost in
half for little time cost. T improves further, but is slower due to
Prior-Guided RANSAC Kornia implementation. Kornia similarly
slows down LoFTR+Solver. T1 with Kornia (not pictured) is also
worse than T, while being slower.

D.2. FAR: Full vs. FAR: One Round

Figure 10 displays an analysis of FAR: Full T vs. FAR:
One Round T1. The distinction between these baselines is
highlighted in Figure 3, which is that FAR: Full T adds an
additional forward pass to the solver, this time injected with
the prior. Like FAR: One Round T1, this is followed by
combination with Transformer predictions.

Despite the two variants of the method being similar, and
results of FAR: One Round T1 being highly competitive,
FAR: Full T yields improvement. This is apparent in the
case of 100-250 inliers, where the prior improves solver out-
put, causing the Transformer to rely on it more (Figure 10,
right) and the full model to improve (Figure 10, left).

Note FAR: Full T has different weightings w than FAR:
One Round T1. This is because FAR: Full T is trained to
predict final output given prior-guided solver output. Since
prior-guided solver output is more accurate than vanilla
solver output, the network learns to rely upon it more heav-
ily. For fair comparison with FAR: Full T, we finetune
FAR: One Round T1 using a Kornia solver for an equal
number of epochs used to finetune FAR: Full T; before us-
ing the Kornia solver during inference. This is necessary
because, as detailed in C, FAR: Full T uses cv2’s unbiased
solver during the first round of computation for efficiency.

D.3. Inference Time Efficiency Comparison

We plot error vs. time in Figure 11. FAR is on the ef-
ficient frontier (down and left), though it is slower than
LoFTR+Solver using OpenCV (cv2). We note a Prior-
Guided RANSAC implementation in cv2 could speed FAR
up towards 15fps (e.g. T1).

D.4. Random Results

Results on random examples are presented in Figures 12-
15.

The comparisons are to the same baselines as in Figure 8.

C+S is an abbreviation for “Correspondence Estimation
+ Solver”, specifically LoFTR with a solver, and learned
scale if necessary. L-B is an abbreviation for “Learning-
Based”, in practice we use LoFTR with an 8-Point ViT head
for Matterport3D (specifically, this is equivalent to FAR:
Transformer Tt), we use 8-Point ViT for InteriorNet and
StreetLearn, and use 6D Reg for Map-free Relocalization.
We choose these learning-based and correspondence-based
comparisons as they are the state of the art and we build
upon them for our method: on all datasets, we use LoFTR
to extract correspondence; on Matterport3D, we use LoFTR
for features, on InteriorNet and StreetLearn we use 8-Point
ViT for features, and on Map-free Relocalization we use 6D
Reg for features.

Random results give visual grounding to quantitative re-
sults from Section 4 and are consistent with conclusions that
FAR outperforms both C+S and L-B. Only 14 results are
presented on each dataset, meaning the sample size is small,
and conclusions should not be drawn from aggregate num-
bers. Rather, these examples are intended to be indicative
of performance on a sample-by-sample basis.

For instance, on Matterport3D, FAR is best 10 out of 14
times in rotation and 7 out of 14 times in translation error.
In addition, when it is not best, it typically is better than one
of C+S or L-B and is typically not significantly worse than
the best method. The two qualities that it is often best and
rarely worst is in line with significantly better performance
than prior work averaged over a full test set.

Random Map-free Relocalization results also agree with
conclusions from Section 4 that FAR is strong. FAR has
best rotation and translation 7 out of 14 times; while rival
L-B wins 2 times in rotation and 3 times in translation; C-S
wins 5 times in rotation and 7 times in translation. Despite
strong performance some of the time, recall from Section 4
C-S error is significantly higher on average than FAR. This
is showcased in the random results: when C-S fails, it does
so spectacularly, for instance with rotation error of at least
120 degrees on 5 occasions, compared to 0 for FAR. To
summarize, in line with quantitative results from Section 4,
in random samples FAR tends to be significantly more ro-
bust than C-S, while producing best results frequently. L-B
is also more robust than C-S, but rarely produces best re-
sults.

Random results on InteriorNet also are consistent with
the paper’s findings. FAR has lowest error in 7 of 14 oc-
casions, vs. 5 for L-B and 6 for C+S. However, the high-
est error for FAR is 4.2◦, while L-B hits 4.9◦ and C-S has
14.5◦. On StreetLearn, FAR has a maximum error of 4.4◦,
while L-B has errors up to 8.2◦ and C+S has errors of 124◦

and 177◦. FAR has lowest error in 8 instances, vs. 3 for
C+S and 5 for L-B. When FAR beats L-B, it is often better
by multiple degrees (up to 6, Figure 15, bottom left), while
when L-B bests FAR, it is typically by less than three de-
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grees. To summarize, random results elucidate FAR is both
precise and robust.

Note results on Map-free Relocalization here, as well
as Figure 8, are on the validation set, since the test
set ground truth is private – test results are available
from submitting predictions through the Map-free Relocal-
ization website (https://research.nianticlabs.com/mapfree-
reloc-benchmark/submit). Otherwise we use test sets for
random results.

D.5. Failure Cases

We can consider some failures in the random examples from
Figures 12-15. For instance, some examples in Map-free are
beyond the capacity of all the tested models: row 1 column
2 has all models with error above 60◦. This is a case of
a large rotation around a symmetric and unusually-shaped
object, so much so it might be initially challenging to a hu-
man. This is a case where recent work focused on visual
disambiguation [11] could be of assistance.

Occasionally, FAR also produces the worst results com-
pared to C+S and L-B, for instance in Map-free results row
2 column 4. Ideally, it would perform at least as well as the
best of C+S and L-B on any instance, but this is evidence it
is not always better than one alternative.
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Random Results: Matterport3D

Rot Mag: 32.5º

C+S: 0.3º

L-B: 0.3º

FAR: 0.2º

Tr Mag: 2.0m

C+S: 0.3m

L-B: 2.8m

FAR: 0.5m

Rot Mag: 37.0º

C+S: 0.3º

L-B: 2.8º

FAR: 0.0º

Tr Mag: 2.1m

C+S: 0.7m

L-B: 0.3m

FAR: 0.2m

Rot Mag: 41.3º

C+S: 0.3º

L-B: 0.3º

FAR: 0.1º

Tr Mag: 0.8m

C+S: 0.6m

L-B: 0.1m

FAR: 0.2m

Rot Mag: 12.8º

C+S: 0.1º

L-B: 2.3º

FAR: 1.3º

Tr Mag: 2.6m

C+S: 1.1m

L-B: 0.7m

FAR: 0.6m

Rot Mag: 78.6º

C+S: 0.5º

L-B: 2.2º

FAR: 0.3º

Tr Mag: 1.9m

C+S: 0.4m

L-B: 0.2m

FAR: 0.3m

Rot Mag: 82.7º

C+S: 73.4º

L-B: 2.6º

FAR: 3.2º

Tr Mag: 0.4m

C+S: 1.0m

L-B: 0.3m

FAR: 0.3m

Rot Mag: 79.3º

C+S: 0.6º

L-B: 8.2º

FAR: 0.1º

Tr Mag: 3.8m

C+S: 2.5m

L-B: 1.0m

FAR: 0.8m

Rot Mag: 68.9º

C+S: 0.3º

L-B: 8.9º

FAR: 0.7º

Tr Mag: 0.5m

C+S: 0.9m

L-B: 0.1m

FAR: 0.0m

Rot Mag: 76.7º

C+S: 0.5º

L-B: 2.9º

FAR: 0.2º

Tr Mag: 2.1m

C+S: 0.5m

L-B: 0.1m

FAR: 0.2m

Rot Mag: 99.2º

C+S: 17.0º

L-B: 5.3º

FAR: 1.5º

Tr Mag: 1.9m

C+S: 0.2m

L-B: 0.3m

FAR: 0.3m

Rot Mag: 48.6º

C+S: 0.1º

L-B: 12.2º

FAR: 0.1º

Tr Mag: 1.5m

C+S: 0.1m

L-B: 0.9m

FAR: 0.3m

Rot Mag: 31.2º

C+S: 0.5º

L-B: 4.2º

FAR: 0.1º

Tr Mag: 1.1m

C+S: 0.6m

L-B: 0.4m

FAR: 0.2m

Rot Mag: 1.5º

C+S: 0.1º

L-B: 8.0º

FAR: 0.4º

Tr Mag: 2.4m

C+S: 1.7m

L-B: 0.4m

FAR: 0.6m

Rot Mag: 4.9º

C+S: 1.8º

L-B: 7.2º

FAR: 1.0º

Tr Mag: 2.3m

C+S: 1.8m

L-B: 0.3m

FAR: 0.3m

Figure 12. Random results on Matterport3D. C+S: LoFTR [70] + Solver. L-B: LoFTR + 8-Point ViT [62]. FAR: uses LoFTR features
and correspondences. FAR is typically best. When not best, it is usually better than one of C+S or L-B.
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Random Results: Map-free

Rot Mag: 16.1º

C+S: 0.9º

L-B: 4.1º

FAR: 0.5º

Tr Mag: 1.0m

C+S: 0.0m

L-B: 0.2m

FAR: 0.1m

Rot Mag: 139º

C+S: 169º

L-B: 145º

FAR: 67.2º

Tr Mag: 4.3m

C+S: 4.7m

L-B: 5.4m

FAR: 4.0m

Rot Mag: 113º

C+S: 120º

L-B: 33.5º

FAR: 28.1º

Tr Mag: 8.6m

C+S: 7.0m

L-B: 6.6m

FAR: 5.7m

Rot Mag: 7.7º

C+S: 1.3º

L-B: 4.0º

FAR: 1.2º

Tr Mag: 0.2m

C+S: 0.1m

L-B: 0.2m

FAR: 0.1m

Rot Mag: 8.2º

C+S: 0.3º

L-B: 5.2º

FAR: 1.0º

Tr Mag: 0.6m

C+S: 0.1m

L-B: 0.2m

FAR: 0.3m

Rot Mag: 12.8º

C+S: 1.1º

L-B: 12.9º

FAR: 23.3º

Tr Mag: 0.5m

C+S: 0.1m

L-B: 1.4m

FAR: 1.3m

Rot Mag: 138º

C+S: 161º

L-B: 42º

FAR: 21.6º

Tr Mag: 4.2m

C+S: 4.0m

L-B: 2.9m

FAR: 2.3m

Rot Mag: 164º

C+S: 167º

L-B: 11.6º

FAR: 20.9º

Tr Mag: 4.5m

C+S: 5.5m

L-B: 1.0m

FAR: 0.9m

Rot Mag: 39.6º

C+S: 27.6º

L-B: 12.2º

FAR: 20.3º

Tr Mag: 3.1m

C+S: 2.5m

L-B: 0.7m

FAR: 1.7m

Rot Mag: 46.6º

C+S: 18.4º

L-B: 6.9º

FAR: 2.6º

Tr Mag: 3.1m

C+S: 1.5m

L-B: 0.6m

FAR: 0.3m

Rot Mag: 7.1º

C+S: 21.5º

L-B: 34.0º

FAR: 38.1º

Tr Mag: 5.4m

C+S: 5.4m

L-B: 7.1m

FAR: 7.6m

Rot Mag: 27.5º

C+S: 5.3º

L-B: 60.7º

FAR: 67.4º

Tr Mag: 1.8m

C+S: 1.2m

L-B: 3.9m

FAR: 2.8m

Rot Mag: 93.0º

C+S: 166º

L-B: 169º

FAR: 38.3º

Tr Mag: 1.7m

C+S: 4.8m

L-B: 0.9m

FAR: 1.8m

Rot Mag: 8.5º

C+S: 0.1º

L-B: 1.2º

FAR: 0.1º

Tr Mag: 0.8m

C+S: 0.1m

L-B: 0.1m

FAR: 0.1m

Figure 13. Random results on Map-free Relocalization. C+S: LoFTR + Solver. L-B: 6D Reg [2]. FAR: uses 6D Reg features and LoFTR
correspondences. FAR is often best, having minimum rotation error 7 instances vs. 5 for C+S and 2 for L-B, and minimum translation
error 7 times vs. 7 for C+S and 3 for L-B. C-S has far worse errors in failure cases than FAR (e.g. row 1 column 7).
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Random Results: InteriorNet

Rot Mag: 65.0º
C+S: 4.3º
L-B: 1.4º
FAR: 4.2º

Rot Mag: 29.7º
C+S: 0.1º
L-B: 2.1º
FAR: 0.3º

Rot Mag: 59.8º
C+S: 8.7º
L-B: 4.1º
FAR: 2.3º

Rot Mag: 26.8º
C+S: 1.1º
L-B: 1.2º
FAR: 0.7º

Rot Mag: 36.4º
C+S: 4.3º
L-B: 3.4º
FAR: 0.9º

Rot Mag: 26.6º
C+S: 2.6º
L-B: 1.5º
FAR: 1.5º

Rot Mag: 10.8º
C+S: 0.3º
L-B: 1.9º
FAR: 0.3º

Rot Mag: 55.6º
C+S: 0.5º
L-B: 4.9º
FAR: 2.6º

Rot Mag: 60.7º
C+S: 14.5º
L-B: 3.3º
FAR: 4.2º

Rot Mag: 44.8º
C+S: 1.9º
L-B: 1.0º
FAR: 1.3º

Rot Mag: 44.6º
C+S: 7.0º
L-B: 3.4º
FAR: 1.6º

Rot Mag: 29.1º
C+S: 0.2º
L-B: 0.8º
FAR: 0.4º

Rot Mag: 18.0º
C+S: 0.5º
L-B: 0.5º
FAR: 0.5º

Rot Mag: 36.7º
C+S: 0.5º
L-B: 3.7º
FAR: 1.0º

Figure 14. Random results on InteriorNet. C+S: LoFTR + Solver. L-B: 8-Point ViT. FAR: uses 8-Point ViT features and LoFTR
correspondences. FAR has the lowest error more frequently than alternatives, and has the lowest maximum error: 4.2◦ vs. 4.9◦ for L-B
and 14.5◦ for C-S.
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Random Results: StreetLearn

Rot Mag: 23.1º

C+S: 1.3º

L-B: 5.4º

FAR: 1.2º

Rot Mag: 42.3º

C+S: 28.2º

L-B: 3.1º

FAR: 2.5º

Rot Mag: 53.3º

C+S: 53.7º

L-B: 0.9º

FAR: 2.0º

Rot Mag: 71.9º

C+S: 64.0º

L-B: 6.1º

FAR: 1.2º

Rot Mag: 86.1º

C+S: 124º

L-B: 2.4º

FAR: 1.2º

Rot Mag: 85.2º

C+S: 78.8º

L-B: 3.3º

FAR: 1.7º

Rot Mag: 48.0º

C+S: 23.3º

L-B: 0.8º

FAR: 3.2º

Rot Mag: 50.5º

C+S: 62.3º

L-B: 8.2º

FAR: 1.9º

Rot Mag: 71.4º

C+S: 3.2º

L-B: 2.3º

FAR: 1.6º

Rot Mag: 37.7º

C+S: 0.6º

L-B: 6.1º

FAR: 1.0º

Rot Mag: 86.0º

C+S: 78.0º

L-B: 2.5º

FAR: 4.4º

Rot Mag: 58.7º

C+S: 4.6º

L-B: 1.3º

FAR: 1.3º

Rot Mag: 51.4º

C+S: 1.5º

L-B: 3.4º

FAR: 1.0º

Rot Mag: 79.9º

C+S: 177º

L-B: 2.3º

FAR: 3.4º

Figure 15. Random results on StreetLearn. C+S: LoFTR + Solver. L-B: 8-Point ViT. FAR: uses 8-Point ViT features and LoFTR
correspondences. FAR often has the lowest error – here 8 times vs. 1 for C+S and 5 for L-B; and is more robust than alternatives: FAR
has maximum error of 4.4◦, L-B has maximum error of 8.2◦, C+S has errors of 124◦ and 177◦. When FAR beats L-B, it is often better by
multiple degrees (up to 6), while when L-B bests FAR, it is typically by less than three degrees.
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