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Problem Definition

Our Approach Experimental Results

e Link prediction (LP) is cast as a binary classification

Blog Catalog (Figures report Link Prediction precision@k)
problem Data Partitioning ;
o Does a link exist between any two pair of nodes? e Sub-graphs are divided into training and test sets * SDNE Parameters:
e INPUT: Adjacency list e 15% of the links in the sub-graph are hidden from the training set 0.8F o Embedding size: 100%, 40°
e OUTPUT: Ranked list of most likely edges | o | < | o Hidden layer size: 1000, 400°
Link Prediction from Node Embeddings c 06Ff : .
o o o Supervised loss wt: 1
e Methods embed similar nodes close together = 5 U cod | - 100
e Use node embeddings to predict hidden links 2 04f NSUPETVISEA 1055 WL
Motivation 0.2l |—=—— SDNE * node2vec Parameters:
e Generate citation recommendations on new patents Epra a5 il u 10107 ’ i x#gfc‘;ﬁaigeraph o Embedding dimension: 128
e LP on the Patent Citation Dataset is unprecedented : » v 1000 U0, . e o RW length: 80
o LP on large and temporal graphs is less well studied | , , _
e Compare the performance of SDNE to other classical > Feature rep. .15
network embedding methods on different graph types sk p
0. E SDNE vs. Node2vec:
Approach 1: SDNE ¥0-12: 1. node2vec: Much more
® 0.1f sy g e R computationally efficient than SDNE
Nodes embedded by optimizing weighted loss from: .é 0.08- ——=—— SDNE 2. node2vec: Performs better than
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o Influenced by Leplacian Eigenmaps a W ——s—— PyTorch-BigGraph 3 node2vec: Prediction on future is
Patent Citation Dataset o Captures pairwise similarities i.e. common neighbors 0040 Satter e Seeeline
e 1988 - 1989 subgraph: 40K nodes, 30K edges e Unsupervised autoencoder “second-order proximity” 0.02} *\ -
e 1990 - 1996 subgraph: 580K nodes, 1.2M edges © Mimics Graph Convolutional Network O%+=~300 400 , 600 800 000

o Yielded poor results because of size
e “Future” test set: 500 proceeding nodes with 2 or more

o Captures global structure i.e. role in network
e High unsupervised weight should help in sparse graphs
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Jaccard Observation:
1. Worst asymptotic complexity
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Blog Catalog: 10K nodes, 300K edges 0.14 e
e Undirected graph e Focused on learning low-dimensional representation learning ¥0.12;
e Node embeddings generated through random walk approach ® 0.1 rB' Graph Observation
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link, based on the intersection over union of their neighborhoods
e No learning involved, but very expensive at inference time

Approach 4: PyTorch BigGraph

e Learns node embedding by minimizing distance between adjacent
nodes

e Gains efficiency by augmenting negative sampling with uniform
samples used as negatives
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Conclusions

e LP can work well on temporal graphs. However, sparse graphs makes LP difficult

* RW methods do disproportionately better than nn in this situation

* Scalability is challenging for all methods studied, Pytorch handles best

> Future directions: link prediction on more dense temporal graphs
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