Market Fragmentation and the Latency Arms Race

Chris Rockwell, Erik Brinkman, Elaine Wah, and Professor Michael P. Wellman
High Frequency Trading (HFT) & Latency Arbitrage (LA)

HFT:
• Rapid trading of securities by computers
• Controls over 50% of trading volume today\(^1\)

Latency Arbitrage:
• Type of HFT taking advantage of speed advantages & delay across markets to generate nearly risk-free profit
• Currently accounting for an estimated $21 billion in profit per year\(^2\)
Market Fragmentation

• Over 40 trading venues in U.S. for stocks, each with its own highest bid & lowest sell price
• Implies possibility of price disparity across markets
• Mitigation? regulation NMS: routes orders for best execution based on an aggregated best bid and sell price, the National Best Bid and Offer (NBBO)
• Routed via Security Information Processor (SIP)
Latency Arbitrage

- Traders face latency in their own market and in getting the NBBO
- Latency arbitrageurs face lower latency and can take advantage of price disparities between NBBO and single markets

Regulation NMS \rightarrow Creates exploitable latency advantages
Example

Time t

Background trader i
primary market: 1

Sell @ 105

Market 1
ASK: 111
BID: 102

SIP

NBBO (104, 110)

Market 2
ASK: 110
BID: 104

Latency arbitrageur (LA)

Time t + 1

Background trader i+1
primary market: 2

Buy @ 109

Market 1
ASK: 105
BID: 102

SIP

Market 2
ASK: 110
BID: 104

NBBO (104, 110)

LA

Example

Market 1
ASK: 105
BID: 102

SIP

Market 2
ASK: 110
BID: 109

Buy @ 107

Sell @ 107

LA: arbitrage opportunity found!
Previous Work & Our Model

• Elaine Wah’s Simulation3
 – Two market model
 – Focused on LA effects on surplus and liquidity

• Our Simulation: similar
 – Include delay for latency arbitrageurs
 – Include delay for agents to local markets
 – Multiple latency arbitrageurs
 – Focus on reactions of competing HFTs
Competition: Latency Arms Race

- **Latency Arms Race**: A scenario where HFTs try to keep reducing their latencies until they approach 0.

- We are interested in modeling this by looking at revenues in our model to predict how arbitrageurs value reducing latency.

- In reality, HFT firms spend millions of dollars a year investing in technology to reduce latency.
Methodology

Agent-Based Modeling
- Allows us to specify agent behavior individually → overall market behavior can change over time
- Particularly conductive for modeling interactions between traders, exchanges, and the SIP

Discrete-Event Simulation
- Facilitate isolation of relationship between fragmentation, clearing rules, and latencies
- Allow variable latency of information access for different agents to different markets
Note: Orders are routed to the market offering the best execution, based on a comparison of the NBBO and prices in the alternate market.
Background Traders

• Access to NBBO with latency δ
• Access to their market with latency $\theta < \delta$
• Trade based on private valuation of stocks, using simple strategies

Latency Arbitrageurs

• Access to all markets at a single latency α or $\beta < \theta$
• Arbitrage if market 1’s highest buy order (BID) > market 2’s lowest sell order (ASK) or vice versa
 --Buy in market 1 & sell in market 2
Single-Equity Model

Captures:

• Communication latencies (between exchanges, information processors and traders)
• Current U.S. regulatory environment (order routing, Regulation NMS)
• Relationship between market fragmentation & latency arbitrage
• Competition between latency arbitrageurs
Experiments

• Simulate two-market model with two latency arbitrageurs
• Measure revenues at various latencies

Scenarios:
1. Both agents at equal latency
2. Agents at unequal latencies
• Focus on what reaction each HFT will take to different situations and how these decisions affect shared revenue of agents
• Use **Empirical Game Theoretic Analysis (EGTA)** to ensure fundamental agents respond appropriately to varying HFT strategies
Hypothesis

• Predict HFTs face a prisoners dilemma in the form of a latency arms race
 – HFTs will invest in faster technology regardless of other firm’s decision
 – Would be best off not doing this
Hypothesis: HFTs Will Invest

• If the other HFT **does not invest** in faster technology:
 – This HFT has incentive to invest to receive all of revenue from latency arbitrage, rather than half

• If the other HFT **does invest** in faster technology:
 – This HFT has incentive to capture half of revenue from latency arbitrage, rather than none.
 – If possible, it will speed up more as it now finds itself in the situation above
Hypothesis: Prisoner’s Dilemma

• Assume cost of investing in technology is nonzero and revenue for arbitrageurs is not significantly correlated with latency when greater than zero

• Arbitragers are best off mutually agreeing not to invest in technology
<table>
<thead>
<tr>
<th></th>
<th>No Investment</th>
<th>Small Investment</th>
<th>Large Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Investment</td>
<td>(\left(\frac{1}{2}, \frac{1}{2} \right))</td>
<td>((0,1))</td>
<td>((0,1))</td>
</tr>
<tr>
<td>Small Investment</td>
<td>((1,0))</td>
<td>(\left(\frac{1}{2}, \frac{1}{2} \right))</td>
<td>((0,1))</td>
</tr>
<tr>
<td>Large Investment</td>
<td>((1,0))</td>
<td>((1,0))</td>
<td>(\left(\frac{1}{2}, \frac{1}{2} \right))</td>
</tr>
</tbody>
</table>

A simplistic model estimating revenues for the two LAs. Note if we were looking at profit, having an investment would involve a higher cost and thus lower profit. Payoffs are a fraction of total revenue earned using latency arbitrage.
Future Work

• Changing minimum bid increment to see effects
• More complex latency arbitrage strategies
• Look at different model structures
 – Call market vs. two CDA market4
Citations

1. According to Financial Times, 29 July 2009, 73% in “SEC runs eye over high-speed trading.”

Acknowledgments

• This work was supported by NSF Award 1156469, for REU Site: Incentive-Centered Design. PI Erin Lea Krupka.