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ABSTRACT
By utilizing increasingly accurate graph embedding methods, link
prediction has been demonstratively successful on a growing number
of datasets, many of which can serve clear utility. However, link predic-
tion is less well studied on large, sparse, and temporal settings. In this
paper, we apply link prediction for the first time to the Patent Citation
Network: a large, temporal, sparse graph. Experiments demonstrate
weaknesses of a neural network based method, Structural Deep Net-
work Embedding, in contrast with surprisingly good performance of
node2vec. By comparing with link prediction results on a more typi-
cal dataset, BlogCatalog, we highlight the scalability of the PyTorch
BigGraph method, demonstrate difficulties resulting from sparsity,
and provide evidence that link prediction can generalize to a temporal
setting.

1 INTRODUCTION
The primary focus of this project is on applying large scale graph
mining techniques on the Patent Citation dataset [6]. Due to limita-
tions of this dataset and for comparison, we also utilize the BlogCat-
alog dataset [19]. We focus on Link Prediction (LP), which can be
broadly defined as the prediction of edges between nodes in a graph.
In the case of the Patent Citation dataset, this task can be thought
of as making recommendations of past patents to cite or explore
for an author of a patent in development. In other words, once the
author has found some patents from which to build, our system will
be able to provide other patents of interest for the current project.

Formally, LP takes as input a partially observed graph G ∈

{0, 1, ?}n×n , where 0 denotes a known absent link, 1 denotes a
known present link, and ? denotes an unknown status link [13].
The goal is to make predictions on the ? entries.

The task of link prediction is closely related to the task of repre-
sentation learning [5]. Link prediction can be made between nodes
that have “similar" embeddings by first embedding the nodes in a
lower-dimensional feature space. This is illustrated in Fig. 1.

Figure 1: Link prediction via representation learning

Although our graph is directed, we perform this task with the
assumption that it is undirected, similar to past work in [13, 18]. In
the patent citation network, the direction of links is trivial given

that patents will always cite older patents. At test time, the direction
of edges can be inferred considering edges it is trained upon and
predict can only link with nodes in one direction: backward in time.

2 DATASET
2.1 Blog-Catalog
The BlogCatalog dataset [19] was introduced to first validate per-
formance of the proposed SDNE method. Results of SDNE on the
BlogCatalog dataset were reported byWang et al. [18], so the dataset
is a useful benchmark of the SDNE implementation. The exact de-
tails of the dataset are not important, but the dataset itself contains
10,312 nodes and 333,983 edges in an undirected graph. Ground
truth classifications are also available to aid in visualization of the
embedding results.

The degree distribution for the Blog Catalog graph is shown in
Fig. 2. Note the y-axis is in log base 2. There is a wide range of
node degrees, from 1 to 212 ≈ 4000. The overall node-to-edge ratio
indicates that this is a rather dense graph with a moderate number
of nodes, and is therefore an excellent test case for link prediction
methods.

Figure 2: Blog Catalog dataset degree distribution

2.2 Patent Citation Network
The Patent Citation dataset consists of all utility patents granted
from 1963 to 1999. It represents these patents in a directed, temporal
graph. In addition, the dataset contains feature information for each
patent filed after 1974 [6].

The citation network can be abstractly represented as a directed
acyclic graph (DAG), G = (V ,E), where each vertex, u,v ∈ V , rep-
resents an individual patent, and each directed edge, (u,v) ∈ E
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parameterizes the connectivity between two patents. It is described
in greater detail by Hall et al. [6]. The network is large, contain-
ing 2,923,922 patents, which correspond to nodes, and 16,522,438
citations, which correspond to edges.

For context, link prediction tasks are typically performed on
datasets with significantly fewer nodes. SDNE [18], one of the
methods studied, reports LP on Blog-Catalog [19] and ARXIV GR-
QC [7] datasets, both of which have under 11k nodes. On the other
hand, using more than 500K nodes is typically reserved for pa-
pers focused on a very scalable method, such as Pytorch BigGraph
[11]. To make node embedding and link prediction tractable for all
methods studied, we focus on a small subgraph of the dataset.

Our first subgraph takes all nodes and edges from within 1988-
1989 (inclusive). This subgraph consists of approximately 40K nodes
and 30K edges. Sparsity is inevitable within any temporally con-
tiguous extraction of the full network. This subgraph is, however,
the densest for a contiguous 2 year period of time.

The sparsity can be seen in Fig. 3 (note the non-log scale), where
we observe much smaller in-degree. The most common in-degrees
observed are 0 and 1.

Figure 3: 1988-1989 Patent citation subgraph in-degree dis-
tribution

Our second subgraph consists of all nodes and edges from within
1990-1996 (inclusive). This subgraph consists of approximately 580K
nodes and 1.2M edges. Although this is slightly more dense, it still is
very sparse compared to the entire dataset and its large size proves
challenging for most methods.

2.3 Data Partitioning
Two tools were developed to preprocess the patent citation net-
work. The first tool extracts a subgraph based on lower and upper
bounded years. This subgraph is effectively the "test" set and used
to assess the predictive performance of the methods that are tested.
To generate the training dataset, 15% of the links are randomly
removed (i.e., hidden).

The second tool preprocesses the node ids (patent numbers) and
map them to {0, 1, 2, . . . ,N − 1} where N is the number of patents.
This was necessary becausewe noticed that SDNE allocatesmemory
corresponding to the max node id rather than the number of unique

Figure 4: 1990-1997 Patent citation subgraph in-degree dis-
tribution

node ids. This was problematic given that the original data consisted
of node ids starting at approximately three million, resulting in
unnecessary memory allocation.

3 PROPOSED METHODS
Several methods for link prediction are evaluated as part of this
work, which are described in the following sections.

3.1 Graph Convolutional Network Method:
Structural Deep Network Embedding

3.1.1 Representation Learning. SDNE is considered as it has been
shown to be effective in dealing with sparse networks and in cap-
turing significant non-linearity in the graph structure, as well as
both first and second order proximity.

SDNE consists of a two step process consisting of supervised
learning steps (first order proximity), and unsupervised learning
(second order proximity). First order proximity is defined aswhether
or not there is an edge between two nodes in the graph. This step
uses laplacian eigenmaps that penalizes more distant mappings
of similar vertices. It is thus able to capture pairwise similarities,
i.e., common neighbors. Second order proximity captures global
structure or role in network communities. This part is performed
using a deep autoencoder that embeds the graph nodes into a low
dimensional latent space that simultaneously captures the nonlin-
earity in the graph structure. It can be thought of as mimicking
a graph convolutional network [8]. Together, the two paradigms
capture the explicit and implicit similarities between nodes.

SDNE uses a a neural network framework that is implemented
with TensorFlow using user-defined hyperparameters. The hyper-
parameters here consist of the number of hidden layers, number of
nodes per hidden layer, the output layer dimension, and weights of
first and second order proximity losses. The input layer dimension
is always equal to the number of nodes in the respective graph.
The output layer dimension is equal to the desired embedding size,
which is referred to as the low dimensional latent space.
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A sparse adjacency matrix is first constructed from a list of
input graph edges, after pre-processing has been performed with
the previously mentioned partitioning tools on the raw dataset(s).
Training is then performed using the neural network, and weights
of each layer are optimized using mini-batch gradient descent. The
batch size and the learning rate are also user-defined.

3.1.2 Link Prediction. Following [18], 15% of the edges were ran-
domly hidden in the pre-processing step to form the training graph.
The original graph containing 100% of the edges forms the test
graph, which is the ground truth used to assess the accuracy of the
embeddings.

After training, both reconstruction and link prediction are as-
sessed within the SDNE framework. In the SDNE implementa-
tion, the link prediction utilizes the previously learned embeddings
through a simple notion of distance, i.e. nodes that have similar
embeddings are likely to have a mutually shared link between each
other. To predict, all nodes are dotted with all other nodes, and
pairs of nodes are ranked by similarity. Edges are then predicted
between the most similar nodes pairs.

Note link prediction only considers the prediction accuracy on
edges hidden from the training set. This score can then be thought
of as how well the embedding represents the entire graph, as simply
memorizing the training graph is not enough to produce results.

3.1.3 Future Link Prediction on Patent Citation Network. In reality,
we want to predict patents of interest for citation to new patents in
the case of the Patent Citation Network. These patents, of course, do
not have future patents citing them to give us information. The link
prediction task set aside above, and used in non-temporal graphs
previously [18], is therefore not directly relevant.

To test prediction of future links, we create a special 500 node
set from directly after the remainder of the training set. However,
these nodes do not have citations coming from the future. To avoid
embedding nodes based on zero edges, we consider only nodes
with at least two backward looking citations. The remainder of
the testing is exactly the same as link prediction above, with the
caveat that embeddings of the entire graph are only compared with
these 500 nodes to predict links. Note we do not test future link
prediction on BlogCatalog as it is not a temporal set.

3.1.4 Reconstruction. Within the SDNE framework, graph recon-
struction is also evaluated. Reconstruction evaluates how well the
embedding is learned on the training graph, with 15% of edges
omitted.

In constrast to link prediction, reconstruction measures how
well the learned embeddings can reconstruct the training graph
edges (which is not the ground truth). This task is easier given
memorization is a viable strategy. Although reconstruction is not
directly applicable in our theorized task of recommending patents to
cite, it provides a way to evaluate performance of different methods
that gives information not represented in link prediction. On the
hardest of tasks, when link prediction scores are very low, it can
also give an easier benchmark.

3.1.5 Implementation. The specific implementation for SDNE in
this work is based off https://github.com/suanrong/SDNE. The code
was modified for scalability.

3.2 RandomWalk Based Method: node2vec
3.2.1 Representation Learning. An alternative method to gener-
ate the node embeddings is node2vec [5]. In this algorithm, node
embeddings are generated via 2nd-order random walks through
the graph. These random walks may be biased using the return
parameter p and the in-out parameter q. By tuning these param-
eters, node2vec has been shown to capture either homophily or
structural equivalence. This is akin to a breadth-first search (BFS)
or depth-first search (DFS) approach. For this work, unbiased walks
are utilized (p = q). Stochastic gradient descent (SGD) is used to
optimize the loss function:

max
f

∑
u ∈V

[
− log

( ∑
v ∈V

exp(f (ni ) · f (u))
)
+

∑
ni ∈NS (u)

f (ni ) · f (u)
]
(1)

Since this is computationally expensive to evaluate across all nodes,
negative sampling is utilized. NS is the node set across the random
walk strategy S .

3.2.2 Link Prediction. In this method, link prediction is performed
similarly as in SDNE. For node2vec, the generated node embeddings
are evaluated pair-wise using the binary Hadamard operator to
determine if a link exists between two nodes. This is only performed
over the subset of missing edges.

3.2.3 Reconstruction. The reconstruction task is similar to the link
prediction task, except that it is evaluated over the training edge
set. No a priori edges are assumed, but the learned embeddings
are used to reconstruct the original graph by determining if an
edge exists between two nodes solely from their embeddings. This
reconstructed graph is compared to the original training graph for
accuracy.

3.2.4 Implementation. The specific implementation for node2vec
in this work is based off https://github.com/lucashu1/link-prediction.
Routines to compute precision@K for link prediction and recon-
struction tasks were implemented on top of the existing code base.

3.3 Non Neural Network Based Method:
Jaccard Coefficients

One of themethodswe use as a baseline approach for link prediction
is the Jaccard coefficient. This value is a measure of similarity
between two nodes based on their direct neighbors, and is calculated
as the intersection of their neighbor sets over their union, as follows:

JC(X ,Y ) =
NX ∩ NY
NX ∪ NY

Where X and Y are nodes, and NX , NY are their neighbor sets.
The larger this value, the higher our confidence that the two nodes
share an edge. Note that with this approach, no node embeddings
are computed or learned. While this method is very simple and
intuitively reasonable, it is also rigid, and our assumptions about its
value seem less reasonable under certain conditions. For example,
in a temporal graph like the patent dataset, if the time span over
which we sample from the whole dataset is short, then we may
have many situations where two patents filed in the same year cite
a similar set of prior work, but do not share a citation between

https://github.com/suanrong/SDNE
https://github.com/lucashu1/link-prediction
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them, so having a high Jaccard coefficient may not be as effective
a predictor as in other graph settings. This method is also related
to SDNE in the sense that it is precisely a measure of second-order
proximity, how similar the neighborhoods of two nodes are.

3.3.1 Implementation. The specific implementation for Jaccard
in this work is based off tools in the Python networkx library,
implementation of all metrics were done by us for evaluation.

3.4 PyTorch BigGraph
In addition to the node embedding methods discussed already, we
also considered a method from a recent work by Lerer et al [11]
called PyTorch-Biggraph, which is a tool developed in PyTorch for
learning node embeddings for web-scale graphs. The method used
in this work differs from that of node2vec in that is does not use a
random walk sampling approach, but rather learns an embedding
that attempts to maximize a similarity function for nodes that share
an edge while minimizing the score between nodes not sharing
an edge. This can be done by sampling edges from the graph and
creating negative samples (edges that don’t exist in the graph). Then
we can train a model that maximizes the following loss function

L =
∑
e ∈G

∑
e ′∈S ′e

max(f (e) − f (e ′) + λ, 0)

where λ is a margin hyperparameter and

S ′e = {(s ′, r ,d)|s ′ ∈ V } ∪ {(s, r ,d ′)|d ′ ∈ V }

S ′e is the set of all possible mutated edges where only the source
or destination are changed, and r is a relation between the two
nodes. In our setting, there is only 1 relation, which is that the source
cites the destination node. Each training pair is a positive edge e
and a mutated edge e ′ with either the source or the destination (but
not both) mutated to create a negative sample. This has the effect
of making nodes that share an edge close together in embedding
space and nodes which do not share an edge are farther apart in
embedding space. PyTorch-Biggraph also uses other techniques to
increase scalability such as partitioning the graph into different
components and performing training in each component. This
introduces the potential of corrupting the training data, however,
in the author’s experiments and ours, this does not lead to poor
results. The corruption occurs because when determining negative
samples by mutating existing edges, we can not check the whole
graph to guarantee that a mutated edge does not exist in the original
graph.

3.4.1 Implementation. The specific implementation for PyTorch
BigGraph in this work is based off https://github.com/facebookresearch/
PyTorch-BigGraph.

4 EXPERIMENTS
LP can be formulated as a binary classification problem to answer
the underlying question: does there exist an edge, e ∈ E , between
two nodes ∈ V . For the patent dataset, the edges will be divided
into three partitions: (1) training set (2) validation set and (3) test
set.

We use a similar experimental setup as previous work such as
SDNE [18] and DeepWalk [14] where a random selection of edges

in the patent dataset will be hidden and partitioned into validation
and test sets. The remaining edges will be used to train a network
embedding model [18]. Note that the nodes themselves are not
partitioned in this process.

4.1 Experimental Setup
The hyperparameters used for the Blog-catalog case are shown in
Table 1. This follows the configuration reported in [18]. Running
on 4 CPUs, total training runtime was approximately 4 hours.

For the Patent dataset, the hyperparameters were chosen largely
out of memory and computational constraints.

Hyperparameter Blog Catalog Patent
Number of Hidden Layers 1 1
Nodes in hidden layer(s) 1000 400
Network embedding size 100 40

Learning rate 0.01 0.01
Batch size 32 16

Table 1: SDNEHyperparameters for Blog Catalog and Patent
Citation networks

Likewise, the parameters for the node2vec method are shown in
Table 2 for both the Blog Catalog and Patent Citation graphs.

Parameter Blog Catalog Patent
Embedding Dimension 128 128

Return p 1 1
In-out q 1 1

Walk Length 80 80
No. Walks per source 10 10

Table 2: node2vec parameters for Blog Catalog and Patent
Citation networks

4.2 Evaluation Metrics
Following previous works using embedding methods for LP [18],
we evaluate our performance using the precision@k metric. Preci-
sion gives us the percentage of true positive predictions from our
model, which is relevant for LP since we are only directly predicting
which links should exist in LP and only implicitly which should
not exist. Precision at k is a useful metric often used in information
retrieval for identifying the number of relevant results in top k
ranked predictions. In graph mining it can be used for precision
in top k ranked by confidence predicted links. The calculation for
precision@k is as follows:

precision@k(i) =
|{j |i, j ∈ V , index(j) ≤ k,∆i (j) = 1}|

k

where V is the vertex set, index(j) is the ranked index of the j-th
vertex and ∆i (j) = 1 indicates that vi and vj have a link.[18]

Recallprecision@k for link prediction is only computed on edges
predicted not in the training set. This means an edge predicted that
exists in the training set is simply skipped over, without count nor
the correct edges increasing.

https://github.com/facebookresearch/PyTorch-BigGraph
https://github.com/facebookresearch/PyTorch-BigGraph
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4.3 Blog-catalog
Table 3 shows the Precision@Kmetric evaluated at various k values
for reconstruction (relative to the sparsified training graph) and
link prediction (relative to the ground truth). The reconstruction
results match the reported results of [18] quite well, and show
good reproducibility. The exact batch size and learning used in [18]
were not reported, so minor differences are expected. Note that link
prediction was only done up to k = 1000, and demonstrates 50-
60% accuracy in link prediction over the randomly omitted nodes.
Scores are comparable at K < 10000 to what was reported in the
SDNE paper for reconstruction.

Precision@K Reconstruction Link Prediction
10 1.00 0.60
50 0.85 0.59
100 0.80 0.56
500 0.77 0.51
1000 0.76 0.49

Table 3: SDNE precision@K results for reconstruction and
link prediction on Blog Catalog

Table 4 shows the reconstruction and link prediction results
using node2vec. Note that link prediction was not reported in that
paper. The reconstruction scores are lower than SDNE, but link
prediction scores are higher. This could be due to the dense Blog
Catalog graph being insufficiently explored with the random walk
approach.

Precision@K Reconstruction Link Prediction
10 0.700 0.800
50 0.660 0.920
100 0.790 0.810
500 0.794 0.806
1000 0.796 0.796

Table 4: node2vec precision@K results for reconstruction
and link prediction on Blog Catalog

Due to the computational complexity of link prediction with
Jaccard coefficients, we do not report those experiments for Blog-
Catalog as it is much larger than our patent subgraphs.

PyTorch BigGraph does not perform the reconstruction task, so
scores are not reported. Figure 5 below shows the comparison of
link prediction for all three methods evaluated on the Blog Catalog
graph.

4.4 Patent Citation Network
Due to the current limited computing resources, we have resorted
to using a very small portion of the patent citation network to
assess the performance of SDNE. The preliminary results in this
section uses the sub-graph that consist of patent edges between
1988 and 1989. This subgraph consists of 40,770 nodes and 30,206
edges, containing all patents from 1988 through 1989 that cite only
each other. The training was performed using SDNE.
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Figure 5: Blog Catalog link prediction results

4.4.1 Baseline: No Future Nodes. In this study, the size of the hidden
layer and network embedding is limited due to memory and com-
putational bottlenecks. Running on single GPU unit, the training
runtime took upwards of 20 hours even on the reduced subgraph.

The results of the reconstruction and link prediction for the
Patent citation subgraph are shown in Table 5. It is apparent that
the SDNE method performs quite poorly on this subgraph in both
the reconstruction and the link prediction tasks. It is likely pairwise
similarities is not very helpful in this task, but interesting to note
even when changing weights to consider global structure more the
result remains low. Here unsupervised loss is weighted 100:1 ratio
to supervised.

Precision@K Reconstruction Link Prediction
10 0.200 0.000
50 0.080 0.000
100 0.060 0.000
500 0.074 0.004
1000 0.061 0.006

Table 5: SDNE precision@K results for reconstruction and
link prediction on baseline Patent Citation subgraph.

Performance in general is weak likely because of the sparse
nature of the subgraph, having a edge-to-node ratio of < 1. This
implies that many nodes have have only one edge connecting to
it, and the graph may contain nodes with mutual edges that are
completely disconnected from other nodes. Physically, this is an
inherent feature of the patent citation dataset (patent “lag" time [6]),
where patents are not likely to cite other patents that were filed
within the same year or two, instead citing much older patents.

The reconstruction scores in Table 6 indicate that node2vec is
surprisingly effective at the reconstruction task, even for extremely
sparse graphs. Likewise, link prediction scores are > 10%, signifi-
cantly higher that SDNE. The results for reconstruction and link
prediction using Jaccard coefficients are presented in Table 7, but
show much poorer performance in both the reconstruction and link
prediction tasks.
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Precision@K Reconstruction Link Prediction
10 0.800 0.100
50 0.860 0.120
100 0.840 0.120
500 0.818 0.118
1000 0.815 0.127

Table 6: node2vec precision@K results for reconstruction
and link prediction on baseline Patent Citation subgraph

Precision@K Reconstruction Link Prediction
10 0.000 0.000
50 0.000 0.000
100 0.069 0.069
500 0.032 0.032
1000 0.023 0.019

Table 7: Jaccard precision@K results for reconstruction and
link prediction on baseline Patent Citation subgraph

We can see from Figure 6 that PyTorch-Biggraph performs much
better than Jaccard and SDNE on both experiments in the patent
dataset, however, not as good at node2vec. One thing to note in
all our experiments with Pytorch-Biggraph is that performance
increases as we increase k . This result is in line with the results pre-
sented on other datasets in the original paper for PyTorch-Biggraph
[10]. One hypothesis for why we see the upward trend in per-
formance has to do with the fact that the implemented method
maximizes similarity based only on whether two nodes share an
edge. In graphs like the patent subgraph we consider, it is more
likely a node will be closer to another node that cites the same
patents, rather than one where an edge has been removed. How-
ever, this would not explain the upward trend in BlogCatalog and
the FreeBase dataset [10].

Figure 6 shows the comparison of link prediction among the
four methods. Overall, the link prediction scores are much lower
for the Patent citation graph than the Blog Catalog. We observe
that node2vec performs the best, with PyTorch a close seecond. As
discussed, both SDNE and Jaccard seem to perform very poorly on
this sparse graph.

4.4.2 Future Nodes. This set focuses on prediction of links to the
500 future nodes from their embeddings, rather than the missing
15% links that were intentionally omitted during training. These
nodes were selected to have at least two backward-looking edges
to make link prediction meaningful. Forward-looking edges were
removed for realism, as addressed earlier.

Reconstruction was only evaluated with the node2vec and Jac-
card methods. Both reconstruction and link prediction scores for
node2vec are tabulated in Table 8. Link prediction scores for node2vec
here are marginally higher than for the baseline case, likely due to
the increased edge density associated with the 500 future nodes, and
reconstruction performs similarly. Likewise, the results for Jaccard
are presented in Table 9, and show similarly poor performance as
in the previous case. Scores are non-zero at higher K values, but
never exceed 7%.
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Figure 6: Baseline 1988-1989 patent link prediction results

Precision@K Reconstruction Link Prediction
10 0.600 0.400
50 0.840 0.160
100 0.840 0.140
500 0.836 0.122
1000 0.826 0.135

Table 8: node2vec precision@K results for reconstruction
and link prediction on future Patent Citation subgraph

Precision@K Reconstruction Link Prediction
10 0.000 0.000
50 0.000 0.000
100 0.069 0.069
500 0.034 0.0034
1000 0.023 0.019

Table 9: Jaccard precision@K results for reconstruction and
link prediction on future Patent Citation subgraph

As in the patent baseline subgraph, Pytorch-Biggraph shows an
upward trend in performance for the future subgraph, and performs
below node2vec.

The link prediction data is summarized for all methods on the
1988-1989 Patent subgraph in Fig. 7. It is difficult to discern a clear
trend here, although PyTorch’s score increases with K .

4.5 Discussion
Surprisingly, node2vec demonstrates superior performance in all
three cases examined in this work, especially for the extremely
sparse 1988-1989 Patent citation subgraph. This is likely because
the random walk approach respects the structure of the graph itself.
If no restarts are allowed, and disconnected components of the
graph are treated as such, starting from the seed node. There is also
a lot more noise in the results from node2vec, largely depending
on the starting seed locations.
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Figure 7: Future 1988-1989 patent link prediction results

Because the largest difficulty faced in our 1988-1989 dataset was
sparsity, we hypothesized that partitionswith higher densities could
improve results. For instance, the subgraph from 1990 through 1996
contains 577,669 nodes and 1,226,658 edges, which is more than
twice as dense as 1988-1989. However, for many methods this is
too large to get good results, or even results at all. We do not report
detailed results on this subgraph as methods were either unable to
run or had such poor results.

4.5.1 Computational Cost Comparison. In the SDNE paper, the
algorithm seemed to need larger and deeper network layers to
perform well with increasing graph size. However, on this large
of a graph it was necessary to have smaller network layers to fit
within memory, hurting performance significantly. On the larger
subgraph, SDNE had link prediction precision@K of 0.000 for all k
tested.

Node2vec is able to run economically for the Blog Catalog and
1988-1989 Patent subgraphs. This is largely a function of the use of
random walks, SGD, and negative sampling. However, node2vec
runs into similar issues as SDNE for the larger Patent citation
subgraph (1990-1996), exceeding normal memory allocations (>32
GB).

The Jaccard Coefficient has the worst asymptotic complexity
of any method we considered. In order to predict the existance
of a link between two nodes, we need to compute both of their
neighborhoods and use them for the Jaccard coefficient calculation.
Since we do not have an efficient method of determining which
nodes to compare as we do with similarity for graph embeddings,
we need to calculate the coefficient for all pairs, which is O(n2).

As may be expected based on its name, PyTorch BigGraph was
found to have the most promise in scaling up to the larger graph
size. Because of the graph partitioning methods and approximate
negative sampling discussed in the approaches section, it is able to
handle larger dataset, and further work would try applying it to
the entire patent dataset.

5 RELATEDWORK
5.1 Related Work on the Dataset
There have been numerous studies utilizing the patent citation
dataset, although most of the work do not fall into the realm of data
mining, and are not strictly relevant in the context of this project.
One such study that is relevant is in [6]. In this, the authors describe
an interesting “lag" effect between citing and cited patents. This
issue likely contributes to the sparsity of subgraphs and makes link
prediction difficult.

Graph mining techniques have also been applied on the dataset.
In [15], community detection was performed on the patent citation
dataset via spectral clustering techniques. The authors showed
the singular vectors of the graph exhibit a a distinct “EigenSpokes"
structure, characteristic of large, sparse social graphs. Graphmining
techniques were applied in [16] primarily for the purposes of link
analysis and outlier detection. The author effectively showed which
patents were “most influential" within the network.

Community detection has also been roughly extended to the
idea of LP. In [2], the authors first utilized hierarchical clustering
techniques to form a dendrogram representation of the network by
explicitly computing the “distance" between citation vectors. Then,
structural changes can be identified by comparing the dendrogram
at discrete instances in time. Semi-supervised classification has
been demonstrated on the patent citation dataset, and is much
more scalable approach to classification, using a random-walk with
restarts (RWR) approach [12] to approximate this “betweenness."

5.2 Related Work on LP
A topical search of LP in the recent literature reveals several promis-
ing approaches, none of which have been performed on the patent
citation dataset to our knowledge. Earlier works on LP relied on ma-
trix factorizations techniques [13] and stochastic gradient descent
optimization for scalability. This approach also took into account
latent and side information about each node, which improved the
prediction performance. More generally, LP in relational data has
also been performed using probabilistic models [17]. Here, the au-
thors model the graph as a Markov network, capturing both the
link structure and attributes of each node.

Within the neural network framework, several distinct approaches
have been demonstrated with applications to LP. Unsupervised
learning of graph representations, such as with Deepwalk [14], is
an important component in first learning the structure and classifi-
cation of such networks. Variational graph autoencoders (VGAE)
have been used for LP, with especially promising results [9]. A con-
volutional neural network is used to “encode" the node features, and
nodes attributes/metadata can be incorporated into the encoding.
Decoding is performed with a inner product of the representation
vectors. Graph convolutional networks [8] use an approach similar
to our unsupervised method. We note these neural network meth-
ods should be expected to struggle similarly to SDNE on the larger,
sparser graph.

There are additional approaches used for LP in the literature,
such as evolutionary algorithms [1], but are not discussed in detail
here. LP in directed graphs has also been investigated in a few
cases [4]. In [3], the researchers discuss how similarity features
commonly used to represent undirected graphs (e.g. Katz, Jaccard)
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can be extended to directed graphs. However, this does not apply
to learned features, and requires additional topological features to
be computed for directed graphs.

6 CONCLUSIONS AND FUTUREWORK
Performance of all methods dropped significantly from BlogCatalog
to the more sparse Patent Citation Dataset. Node2vec and PyTorch-
BigGraph were more robust to the change, while SDNE struggled
on the 1988-1989 partition.

Methods also had difficulty scaling to the larger partition of the
dataset. Node2vec was not able to run on the 1990-1996 partition,
while SDNE registered link prediction scores of essentially 0.

Methods showed a strong ability to generalize temporally. When
comparing link prediction results within 1988-1989 to those on
future nodes, most methods showed similar performance while
node2vec actually outperformed on future nodes. This is an encour-
aging result for link prediction to be used on temporal graphs.

Despite GPU access and background research, scaling algorithms
was difficult both in setup and computation. A main lesson from
the project has been to very carefully select algorithms and com-
puting systems before trying larger-scale graph mining techniques.
Sampling and other techniques can be very helpful in a task such
as link prediction.

When considering the Patent dataset specifically, link prediction
on subgraphs saw lower results than we hoped. Partitioning entire
subgraphs from time periods results in a very small node to edge
ratio. Rather than extracting subgraphs based on years, future work
could explore extracting subgraphs based on communities. For this,
community detection could be performed, and subgraphs could
be made up of one or multiple communities. This is posited to
greatly increase the node to edge ratio, improving link prediction
performance.

A focus of this work was to provide insight into the predictive
comparative performance of the algorithms tested. However, much
of this work was limited by computational constraints, making
optimizing hyperparameters a difficult task. Future work could
perform cross-validation on the algorithms to determine optimal
hyperparameters, and comparisons could then be made for the
algorithms while using their optimized hyperparameters, providing
a more accurate measurement of their comparative performance.
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